# The Mini-Grid Policy Toolkit

Rationale, Approach, Content Highlights

Michael Franz Project Manager

EU Energy Initiative – Partnership Dialogue Facility (EUEI PDF)





# Background on EUEI PDF

#### An Instrument of the EU Energy Initiative

- Founded in 2005 by EU Member States and the EC
- International team, hosted by GIZ

#### **Objectives**

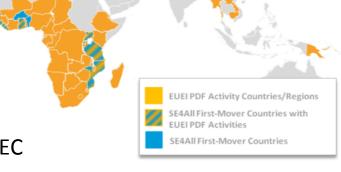
- Improve the policy and regulatory environment for private investments
- Build institutional and thematic capacity for effective partner structures

#### **Activities**

- Service line 1: Energy Policy and Strategy Development
- Service line 2: Support to the Africa-EU Energy Partnership (AEEP)




















#### What Is a Mini-Grid?

- A mini-grid is a power system where the produced electricity is fed into a small distribution network that provides a number of end-users with electricity in their premises.
- Mini-grids are typically off-grid, less than 1 MW in capacity, and utilize diesel, renewable (+battery) or hybrid (combined) fuel sources to produce power.

## The Rural Electrification Challenge

- In view of low electrification rates, economic and population growth, and large geographic areas with dispersed population, IEA has estimated that 60% of the additional generation capacity to be installed by 2030 will be off-grid.
- Rural consumer may pay over \$0.70 per kWh for electricity from a small petrol or diesel generator, \$1.20/kWh for power from a recharged car battery or even (much!) more for energy from kerosene, dry cells or candles.



## Why Mini-Grids?

- Depending on the geographic and demographic situation, certain areas may not be economically supplied through grid extension.
- Abundant renewable energy sources in Africa, as well as drastic improvements on the technology side, make mini-grids increasingly viable.

# Why Haven't Mini-Grids Taken Off yet?

- Hypothesis I: technology is not the issue (any more)
- Hypothesis II: traditional (utility / donor / CSR) ways of implementing mini-grids have inherent limits and will not suffice to meet the needs
- Hypothesis III: since viability of mini-grids is fairly recent, our understanding of viable business / operator models is lagging behind
- Hypothesis IV: this is intertwined with an inadequate understanding of how to create an attractive enabling environment (predominant situation in most countries)



## Why Do We Need a Policy & Regulatory Framework?

- Defining the role of mini-grids in the national energy sector
- Establishing the institutional setup and the roles of stakeholders
- Laying out the rules of the game in legally binding terms
- Providing public, private, or community-based promoters and investors with the confidence required for their commitment while
- Protecting the rights of mini-grid customers and the wider public, including balancing economic, social and environmental considerations



## Why a "Toolkit" for Policy Instruments?

- The starting points are the assumptions that
  - Mini-grids offer real opportunities and benefits for rural electrification
  - Policy and regulatory frameworks for mini-grids require additional work in most African countries
  - Lacking awareness about benefits and opportunities, as well as a lacking understanding of how to effectively regulate (or not regulate!) the sector are at the root of the problem
- Existing literature and available documentation
  - Focuses predominantly on best practices or technical aspects of mini-grids and at project level,
  - Doesn't link policy & regulatory requirements to the various possible operator models,
  - Doesn't sufficiently provide systematic and holistic guidance on what can be done, and how to do it.
- The Mini-grid Policy Toolkit will attempt to provide policymakers and other stakeholders with an improved understanding, and concrete recommendations, on how to establish a conducive policy & regulatory framework



#### **Project Overview**

- Project Framework: AEEP's "Renewable Energy Cooperation Program" (RECP)
- Partners:







- Geographical Focus: Africa (other regions in terms for experiences & best practices)
- Target audience:
  - Senior decision-makers as well as senior technical staff in public authorities
  - Development partners and donors, as well as rural electrification stakeholders and practitioners
- Approach





## The Mini-Grid Policy Toolkit

#### **Structure**

- Introduction: Mini-Grids and Rural Electrification
- Mini-grid Technology
- Mini-grid Operator Models
- Mini-grid Policy and Regulatory Frameworks
- Enabling Mini-Grid Progress in Africa: Lessons and Recommendations
- Annexes, incl. literature / further reading, case studies, etc.

#### **Format**

- Short, condensed document with a lot of visualization elements
- Available in English and French



# Content Highlight I: Mini-Grid Operator Models

|                 | Model 1                             | Model 2                                | Model 3a                  | Model 3b                | Model 4 Community      |
|-----------------|-------------------------------------|----------------------------------------|---------------------------|-------------------------|------------------------|
|                 | Utility                             | Hybrid                                 | Private                   | Private                 |                        |
|                 |                                     | (Utility & Private)                    | (Unregulated)             | (Regulated)             |                        |
| Main driver     | Policy = public                     | Preference for utility                 | Absence of regulation     | Willingness to involve  | Willingness to support |
| for this model  | monopoly                            | involvement, but                       |                           | private sector          | bottom-up, community-  |
|                 |                                     | limited capacity                       |                           |                         | based initiatives      |
| Operator        | Government or                       | IPP generates and                      | Private companies         | Private company         | Community members      |
| characteristics | parastatal utility                  | utility distributes, or                | manage all aspects on a   | manages all aspects, in | manage all /most       |
|                 | manages all                         | the reverse                            | "willing seller / willing | a regulated             | aspects, usually with  |
|                 | aspect                              |                                        | buyer-basis"              | environment             | external support       |
| Examples /      | Kenya                               | Namibia                                | Somalia                   | India, Rwanda,          | Cape Verde             |
| case study      |                                     |                                        |                           | Tanzania, Senegal       |                        |
| Pros            | Relative ease                       | As model 1                             | Ability to deliver        | Ability to attract      | Higher chance to       |
|                 | to absorb                           | <ul> <li>Allows for gradual</li> </ul> | Ability to attract        | private funding         | adress community       |
|                 | public funds                        | introduction of                        | private funding           |                         | interests              |
|                 | <ul> <li>Uniform tariffs</li> </ul> | private sector                         |                           |                         |                        |
| Cons            | Requires                            | As model 1                             | High costs                | • if the regulatory     | High risks in terms of |
|                 | capable utility                     |                                        | No consideration of       | environment is          | sustainability         |
|                 |                                     |                                        | safety, environmental     | functional              | Often unclear          |
|                 |                                     |                                        | etc. concerns             | Lack of experience      | ownership structure    |



# Content Highlight II: Linking Models and Policy

|                                                   | Model 1<br>Utility                                                                                                                                                                                                                                                                                                                           | Model 2: Hybrid (Utility & Private)                                                                                             | Model 3a and 3b:<br>Private                                                                                                                                        | Model 4 Community   |  |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|
| Act of parliament                                 | Topmost "authority": Acts / laws mandate institutions, delegate authority for specific regulation to government bodies (e.g. rural electrification agency, regulator), define roles                                                                                                                                                          |                                                                                                                                 |                                                                                                                                                                    |                     |  |
| Strategy / policy level                           | <ul> <li>National electricity / electrification strategy and policies:</li> <li>global decision designating operator model in the country</li> <li>Some countries may encourage more than one operator model</li> <li>Set out national strategy for rural electrification, including whether and where mini-grids will be applied</li> </ul> |                                                                                                                                 |                                                                                                                                                                    |                     |  |
| General regulation                                | For example Environmental Impact Assessments, permits (e.g. water usage for hydro power); Import regulations; Technical standards (products and services) + their enforcement (!); taxation: e.g. VAT; quality of service regulation                                                                                                         |                                                                                                                                 |                                                                                                                                                                    |                     |  |
| Support interventions                             | Can be anchored in policy framework: many options, for example CAPEX subsidy (financed through donors, taxes, or consumers), tax breaks, connection subsidies, direct support interventions, loan guarantees, etc.                                                                                                                           |                                                                                                                                 |                                                                                                                                                                    |                     |  |
| Specific operator model regulation (key examples) | <ul> <li>Public procurement</li> <li>Tariffs (collected by utility)</li> </ul>                                                                                                                                                                                                                                                               | <ul> <li>Specific licenses and permits;</li> <li>IPP / PPA;</li> <li>Tariffs (uniform tariffs?)</li> <li>Concessions</li> </ul> | <ul> <li>Specific licenses and p</li> <li>Application and appro</li> <li>Concessions;</li> <li>Tariffs (uniform tariffs</li> <li>Future grid connection</li> </ul> | val process (!); ?) |  |



# Content Highlight III: Case Studies

| Case Study | Mini-grid Technology                                                   | Operator Model                                                                                                                      |  |
|------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Cape Verde | Wind hybrid mini-grid                                                  | Model 4: Community Model (donor led grant-based)                                                                                    |  |
| India      | Biomass-PV Mini-grids                                                  | Model 3b: Regulated Private sector PPP model (Subsidized private sector model with reducing subsidies and semi-commercial roll-out) |  |
| Kenya      | Diesel gen-set with solar additions (fuel saver)                       | Model 1: national utility led model                                                                                                 |  |
| Namibia    | Hybrid inverter technology                                             | Model 2: hybrid (utility and community aspects, and system design optimisation)                                                     |  |
| Rwanda     | Hydro-based minigrids that are subsequently connected to the main grid | Model 3b: regulated private sector led installations (incorporated into national grid)                                              |  |
| Senegal    | Hybrid inverter technology                                             | Model 2: Hybrid (concession model)                                                                                                  |  |
| Somalia    | Diesel gen-set                                                         | Model 3a: unregulated private sector led                                                                                            |  |
| Tanzania   | Biomass-/Biogas-based mini- grid                                       | Model 3b: regulated private sector led (anchor client led model incorporated into national grid)                                    |  |



## **Preliminary Recommendations**

#### (based on literature, expert interviews and research; selection)

- Rural electrification is expensive and requires cost-sharing, either through subsidies (taxpayers or donors) or through balancing mechanisms (tariff layovers)
- Mini-grids should have a clearly defined role; policies and regulations should be tailored to the desired operator model
- If private sector investment is desired, attractive and secure investment perspectives must be provided, while balancing with environmental, social, and economic considerations
- Regulation: as much as necessary, as little ("light-handed") as possible; all procedures and documentation should be simple and transparent (→ "bankability")
- Future grid connection has benefits (e.g. for customers, but also grid stability), however, regulation must address risks arising for investors



## Summary

- Mini-grids will in addition to grid-extention / -densification on the one hand, and standalone systems (SHS, solar lanterns etc.) on the other – be one of the pillars of closing the energy access gap
- Economic viability of mini-grids has vastly improved driven by technology innovations; business model innovation and verification is lagging behind
- Policy & regulatory implications of promoting mini-grids still seem to be not fully understood
- Actual frameworks in most countries to this date not conducive to attracting substantial public / private investment → mini-grids should be "streamlined" at all policy levels
- Mini-Grid Policy Toolkit intended to support this; work in progress, ETA = February 2014; suggestions are welcome at any time

Thank you for your attention!

Michael Franz michael.franz@euei-pdf.org

http://www.euei-pdf.org http://africa-eu-renewables.org/





