

The Role of science and scenario modeling in setting SDG priorities

- Earth system, social, economic dynamics
- Governance and resource allocation
- Building concensus
- -Different futures from predictive to backcasting
- -An art not a science.
- -However we need to take calculated risks

Contents

Selected key issues

- Transparency and trust
- Communicating a consistent message
 - Our GHG schizophrenia
 - Clear mapping
- Mapping with policy levers
- Global trends, but national decisions
 - Translating to national needs
 - National sensitivities
- The sum of the parts ...
 - A move to integration
 - A complex system
- Challenges
 - Develop an inclusive process

Brussels

Sign in Site tour Register Subscribe

Search

Advanced search

Home Companies Markets Global Economy Lex Comment Management Life & Arts Africa Asia-Pacific v Europe ▼ Latin America & Caribbean ▼ Middle East & North Africa ▼ UK ▼ US & Canada ▼ The World Blog Tools ▼

Last updated: November 6, 2011 7:44 pm

Reprints

Email

Credibility of EU energy review questioned

By Pilita Clark

The credibility of a European energy review has been cast into doubt by experts who point out that long-term plans to cut carbon emissions are based on an economic model owned by a single Greek university that cannot be independently scrutinised.

Experts have "raised a host of questions" about how the European Commission's use of a non-transparent model could affect the energy review, according to a leaked report by energy specialists chosen by Brussels to advise on the forthcoming "Energy Roadmap to 2050".

> The economic model, known as "Primes", is owned by the National Technical University of Athens and is designed to show how using different unixes of the sev

EDITOR'S CHOICE

MARTIN WOLF

America's fiscal policy is not in crisis

Desperately seeking Bouteflika

PropGOLuxury.com

Communicating a consistent message

Our GHG schizophrenia

 The idea that 'society will pay more for energy for a better environment in the future' is a deficient characterization.
We compare costs with some ethereal state. We should compare costs with costs, and be explicit about our uncertainty.

Two common mistakes:

- There is the assumption that the future will look like the past.
- The only cost often mentioned in many such studies is the cost of mitigation. Not the benefit of having to pay a lower cost than having to adapt to a dangerous future. To stylize, these tend to be kept in compartmentalized silos.
- Business as usual is probably not business as usual. A continuation of current trends builds debt that – according to our current understanding - humanity will pay. Our investments in the future need to be seen as investments with dividends quantified in the same terms. There is uncertainty around those dividends.

Energy-relation	Probable Impact	Ref	Energy-relation	Probable Impact	Ref			
Climate Change								
Greenhouse gas emissions from burning carbon-based fuels	Strong	A	Lowering emissions in the energy sector (including carbon capture)	Strong	В			
Deforestation (and natural habitat loss) due to wood used for heating and cooking	Local	С	Forestry management, alternative fuels (e.g. LPG) and banning charcoal	Local	С			
More biofuels production causing deforestation	Strong local	E	Bio-fuel production regulation including so called 'sustainability criteria'	Strong regional	F			
Ocean Acidification								
Increased atmospheric CO2 concentrations	Strong	A, C, E	Decreased atmospheric CO2 concentrations	Strong / local	B,D,F			
			Extraction of carbon from seawater (counter-acting acidification) for synthetic fuel production	Limited	G			
	Stratospheric Oz	one Depletio	n					
	•							
Increased biofuel production increasing fertilizer use	ping:	cal						
Production, mainly from fossil fuels 'fixes' large qua	- does not exist	Cai	,					
the fertilizer.	does not exist							
Nitrogen is taken from the air when fuel is burned to	- gaps between	scena	ario apporaches	cal/regional	Т			
nitrogen-oxides	•							
	- limited sets of goals represented							
Increased biofuel production increasing fertilizer use	- limited sets of							
Water use in energy production	- not all goals are equal			ong	M			
Water use in biofuel production	- boundaries versus softer targets							
Extensive polution and ecosystem loss	- boundaries ve	cal/regional	Т					
Land use change for large-area energy production								
Effects of hydropower dams on ecosystems and hydrology	Local	Q						
Heavy pollution from fossil fuel extraction	Local/regional	R		Local/regional	Т			
Deforestation (and natural habitat loss) due to wood used for heating and	Local	С	Sustainable energy for all	Local/regional	U			
cooking	Rate of Biodiv	versity Loss						
Deforestation (and natural habitat loss) due to wood used for heating and		C C	Foresty management, alternative fuels and	Local	D			
cooking			banning charcoal					
Biodiversity loss due to biofuels production	Local	Р	Bio-fuel production regulation including so called 'sustainability criteria'	Strong regional	F			
Heavy pollution from fossil fuel extraction	Local Q		,					
Heavy pollution from fossil fuel extraction	Local/regional	R	Pollution standards abatement technology	Local/regional	Т			
Atmospheric Aerosol Loading								
Fine dust and smoke pollution from fuel burning and processing	Local/regional	S	Pollution standards abatement technology		Т			
			Sustainable energy for all	Local/regional	U			
	Chemical P							
Extensive polution and ecosystem loss	Local/regional	R	Pollution standards abatement technology	Local/regional	T			

Mapping with policy levers

science and scenario modeling

- According to recent scenario work urban planning can have of the highest impacts on sustainable development
 - Cities are the largest users of energy
 - The hubs of economic activities
- Unit costs for cleaner service supply are much lower in well designed cities than elsewhere
 - Larger 'bang for development buck' compared
 - To rural development strategies
- The trend of urbanization provides a strong opportunity to act now
 - Most of the world lives in cities and growing
- However poor / no planning can result in long lived infrastructure:
 - Locking people into unsustainable poor:
 - Energy use (and other resource, such as water) use
 - With a slow turn over rate
 - Social (slums)
 - Political (renewal policies)
 - and Physical (appliances, buildings and transport)
- Good planning can strongly reduce:
 - Costs, ecological footprint

Mapping with policy levers

science and scenario modeling

Large opportunity, example: Africa:

- Africa has a higher GDP & energy investment growth rate than any other continent
- Some of the highest levels of renewable and other energy resource
- Analysis shows large (profitable) investment opportunities

But, Africa has: the lowest level of electrification and high levels of import based generation, why:

- Low capital cost = dirty energy sources
- Limited access to expensive energy-services and ecosystem damage

Weak institutions and poor planning

- Basic information and local capacity to synthesize this often lacking
- Ability to rationalize these into implementable policy is weak
- Understanding of government levers matching opportunities is limited
- Little domestic related 'higher education' / research support

• With strong institutions

- Clean(er) capital intensive options with lower investment risk
- Lower cost (energy) services with rational mobilization
- Equitable engagement with investors
- Leverage GDP growth and investment at little marginal cost

Strong resource interactions

- Supply of food, energy and water are strongly interrelated
- Systems are vulnerable to climate change
- Threat: divergent development/Opportunity: efficient policy

Global to national

- Decision makers have constituencies and urgent decisions to make
- The sum of local decisions develop the global picture
- Yet:
 - It is difficult for the national decision makers to incorperate global concerns
 - There is often no value associated with the 'global commons'

	Subnational	National	Regional and global
Project	EIA, ESIA, almost u	Ad hoc IA of cross-border projects	
Programme	Isolated examples	SEA mandatory in Europe and selected other countries;	EIA and PIA by UN, development banks, and global funds
Policy	isolatea examples	CADO in selected developing countries	IA by OECD, UNEP, G20
Sector	Conventional sectoral planning	Conventional energy and infrastructure planning	Many energy, land-use, and water models.
Multi-sector	Significant number of academic applications	Few examples. CLEWS	Moderate number of IAs

The sum of the parts

science and scenario modeling

Navigating the nexus with sustainable development CLEWs: climate, land-use, energy and water strategies...

The danger of secoral goals ... efficient integration

http://webtv.un.org/search/mauritius-general-debate-3rdplenary-meeting-rio20/1700992573001?term=Rio%2020 /

Eartiffrar

Production

Mechanization of Agriculture

Harvestable'

Energy Content

types (e.g. forest, savannah, meadows),

which are subject to potential future change

into agricultural land.

A United Nations Sustainable Development

Key Assumptions

- An additional energy input for mechanization of 1 GJ/ha
- An additional fertilizer input of 50 kg N/ha

Changed energy balance due to

reduced land-use change

40,000

20.000

20.000

60,000

100,000

-120,000

-140,000

160,000

A fuel wood yield in savannah and mixed vegetation of 35 m3/ha and 250 m3/ha in forests

science and scenario modeling

An inclusive process

A clear convening agenda is needed

Standardized data, indicators and scenarios

- Benchmarking
- Rationalizationing effort

Accessible open toolkits and analysis

- Review and revision
- Adoption and Adaption
- Mapping

Transparent assessments to improve:

- Integrated development with clear 'goals'
- Economic efficiency
- Affordable access to services

•Multi-service delivery methodologies

- Consistent: lower cost
- Isolated: counter productive

Policy relevant evaluation of ecosystem services

- To negotiate common resource management
- Support short term decision with long term consequence

Metics: what to measure, what are goals, in a complex system

