The Future of Coal-Based Power Generation With CCS

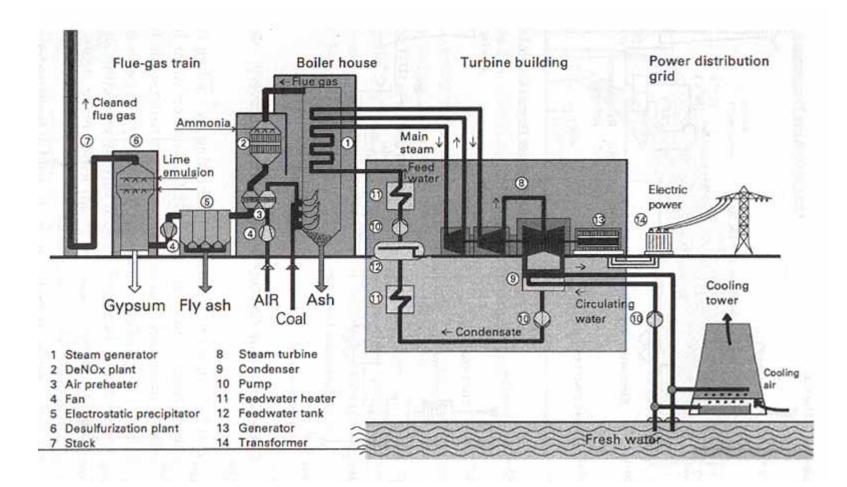
UN CCS Summit James Katzer MIT Energy Initiative web.mit.edu/coal/

Times Are Changing

As Yogi Berra said: "The Future Ain't What It Used to Be"

Overview

Coal-Based Electricity Generating Technologies

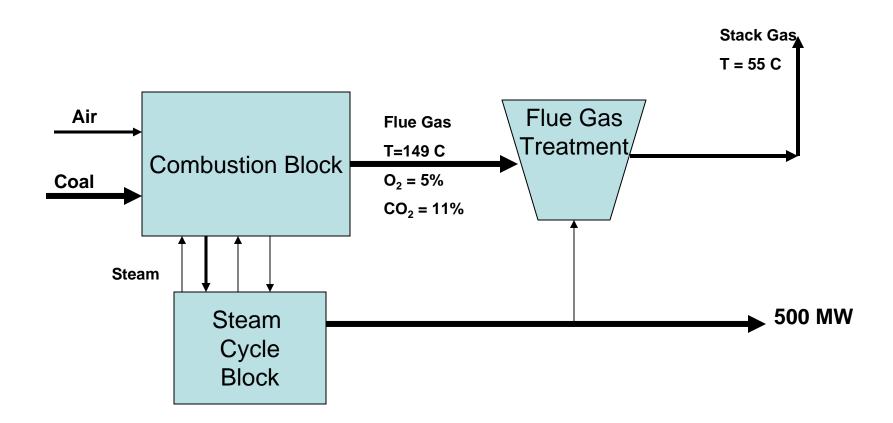

- Without and with CO₂ capture
- Criteria emissions performance today and future potential
- Cost and performance impacts
- CO₂ Transport and Sequestration
- Conclusions
- A Forward View

Coal is and will remain, by necessity, a key component in our electricity generating portfolio for the foreseeable future.

Base Design Conditions for Generation Technologies

- New greenfield unit
- Emissions controlled to below today's best demonstrated performance
- Illinois # 6 high-sulfur bituminous coal
- Used Carnegie-Mellon model for consistent design comparisons
- Costs based on 2000 to 2004 detailed design costs; indexed to 2007 \$ with process construction cost index
- Integrated existing commercial technology
- Single-condition indicative cost comparisons done; coal type, site, location, etc. will affect cost numbers
- Important issue is comparison among technologies w/o and w CO₂ capture MIT: The Future of Coal

Advanced PC Power Plant



The New Generation of Power Plants

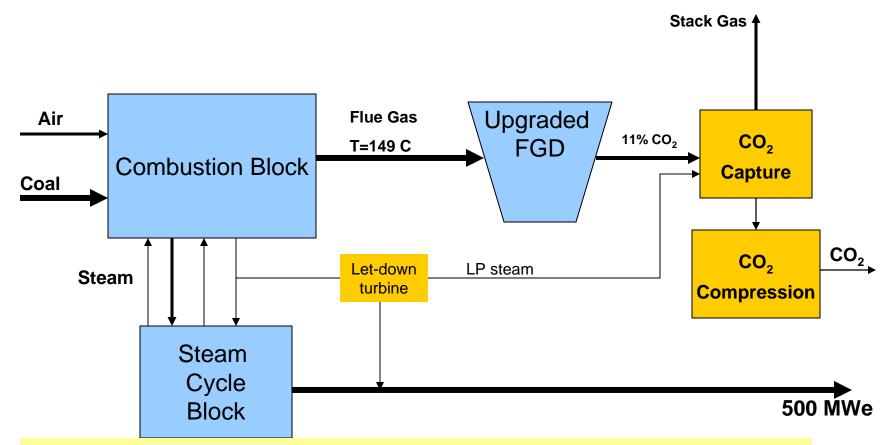
Neideraussem Lignite-fired Power Plant, 965 MWe (net), 43.3% (HHV)

PC Power Plant Schematic

PC Thermal Efficiencies

Sub-Critical Unit

- Operation to 1025 °F and 3200 psi
- 33 to 37 % (HHV)

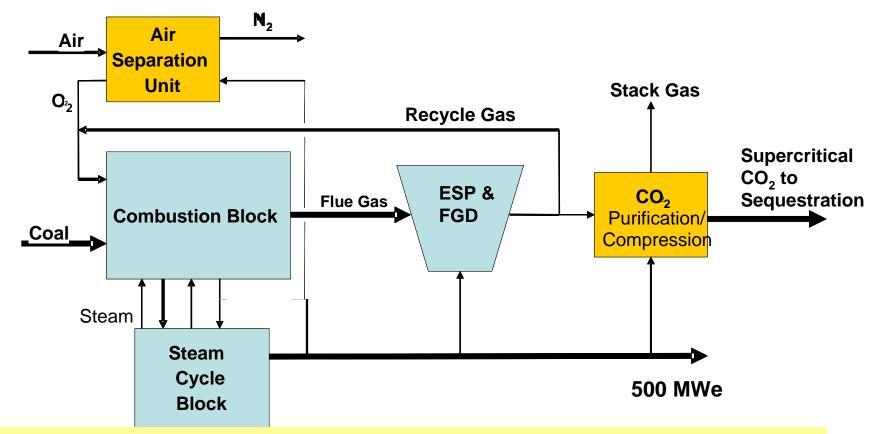

Supercritical Unit

- Typical operation 1050 °F and 3530 psi
- 37 to 42 % (HHV)

Ultra-Supercritical Unit

- Typical 1110-1140 °F and 4650 psi
- 42 to 45 % (HHV)

PC Plant with Amine-Based CO₂ Capture

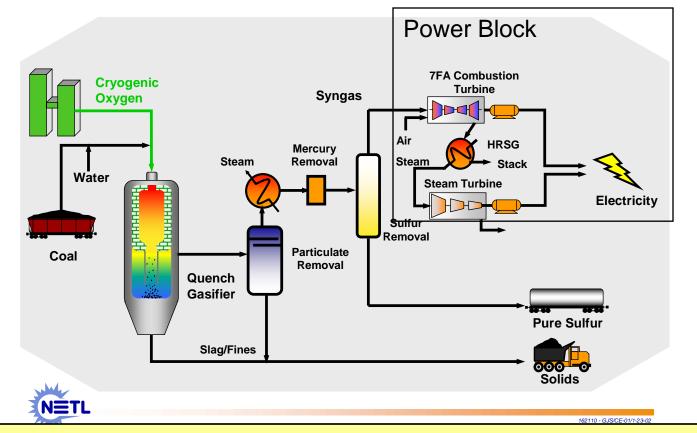

- Generating efficiency is 29.3% for new supercritical plant with CO_2 -capture; down from 38.5% for supercritical no-capture plant; a 9.2 percentage point drop.
- To maintain constant electrical output requires 32% increase in coal consumption
 MIT: The Future of Coal

Oxygen-Driven Power Generation

Issue: Low flue-gas CO₂ concentration due to high nitrogen dilution causes large impact of capture

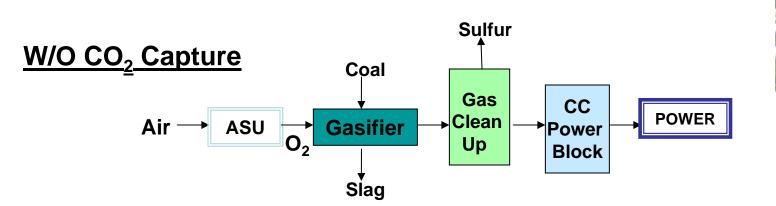
- Solution: Substitute oxygen for air eliminating the nitrogen dilution, compress flue gas directly [Oxy-fuel PC combustion]
- Solution: Gasify the coal and remove the CO₂ at high pressure [IGCC]

Oxy-Fuel PC Generation/Capture

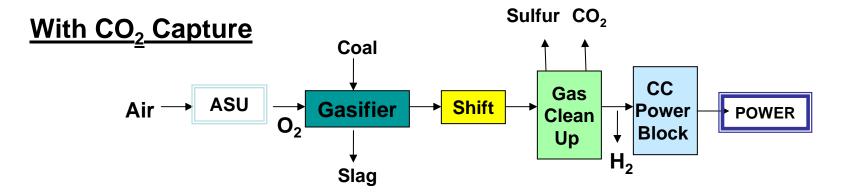


- Of interest only for CO₂ capture for sequestration
- Addresses the issue of high energy costs for capture and recovery
- Requires air separation unit and associated energy usage

Oxy-Fuel PC Generation/Capture


- Current Status
 - Active pilot-scale development
 - Vattenfall planned new 30 MW_{th} CO₂-free coal steam plant with 2008 start-up in Germany
 - Hamilton, Ohio planning 25 MW_e 1963 power boiler retrofit, 2009 start-up
- Oxy-Fuel PC shows potential of lower COE and lower CO₂ avoided cost than other PC capture technologies

IGCC Plant



- Gasifier type is biggest variable:
- Texaco & E Gas: slurry feed & higher pressure, ~39% efficiency potential
- Shell: dry feed and lower pressure, more costly, ~41% efficiency potential

IGCC without and with CO₂ Capture

The Shift reaction converts CO to CO_2 & hydrogen; the CO_2 is then removed.

Performance and Costs of Generating Technologies

	Subcrit	tical PC	Supercritical PC		Oxy-Fuel PC	IGCC	
	w/o capture	w/ capture	w/o capture	w/ capture	w/capture	w/o capture	w/capture
PERFORMANCE							
Heat Rate, Btu/kWe-h	9,950	13,600	8,870	11,700	11,200	8,890	10,900
Efficiency (HHV)	34.3%	25.1%	38.5%	29.3%	30.6%	38.4%	31.2%
CO ₂ emitted, g/kWe-h	931	127	830	109	104	824	101
COSTS							
Total Plant Cost, \$/kWe	\$1,580	\$2,760	\$1,650	\$2,650	\$2,350	\$1,770	\$2,340
Cost of Electricity							
Inv. Charge, ¢/kWe-h @ 15.1%	3.20	5.60	3.35	5.37	4.77	3.59	4.75
Fuel, ¢/kWe-h @ \$1.50/MMBtu	1.49	2.04	1.33	1.75	1.67	1.33	1.64
O&M, ¢/kWe-h	0.75	1.60	0.75	1.60	1.45	0.90	1.05
COE, ¢/kWe-h	5.45	9.24	5.43	8.72	7.89	5.82	7.44
Cost of CO ₂ avoided vs. same technology w/o capture, \$/tonne		47.1		45.7	34.0		22.3

Basis: 500 MWe plant. Illinois # 6 coal, 85% capacity factor, COE at bus bar. Based on design studies between 2000 and 2004, a period of cost stability, indexed to 2007 \$ using construction cost index.

Emissions Performance

Technology Case		Particulates SO ₂		NO _x	Mercury	
			lb/MM Btu	lb/MM Btu	lb/MM Btu	% removed
PC Pla	ant					
		Typical	0.02	0.22	0.11	
	Best Commercial		0.015 (99.5%)	0.04 (99+%)	0.03 (90+%)	90
	Design	w CO ₂ Cap.	0.01 (99.5+%)	0.0006 (99.99%)	0.03 (95+%)	75-85
IGCC	<u>Plant</u>					
	Best Commercial		0.001	0.015 (99.8%)	0.01	95
	Design	w CO ₂ Cap.	0.001	0.005 (99.9%)	0.01	>95

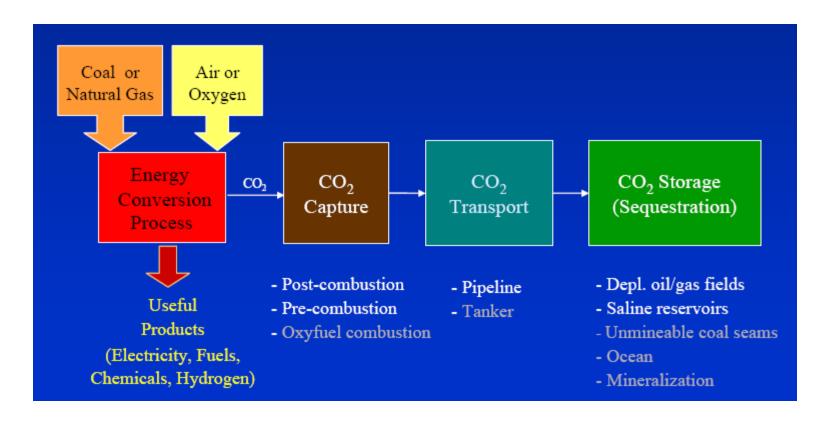
PC emissions control technology continues to improve; further, emissions reductions potential exists. Design case with CO₂ capture from recent EPRI evaluation.

IGCC emissions performance (best commercial) is well below current requirements and can be further improved; should be similar to NGCC

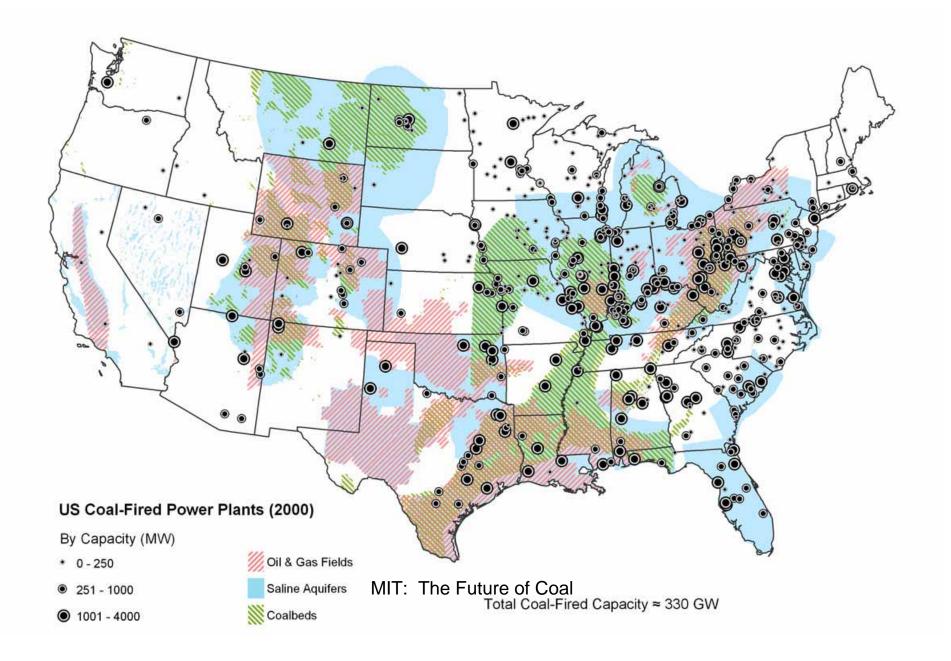
Incremental Costs of Advanced PC Emissions Control Vs. No-Control

	Capital Cost* [\$/kW _e]	O&M [¢/kW _e -h]	COE** [¢/kW _e -h]
PM control	50	0.18	0.28
NO _x	32	0.11	0.17
SO ₂	190	0.22	0.60
Incremental	273	0.51	1.05***
control cost			

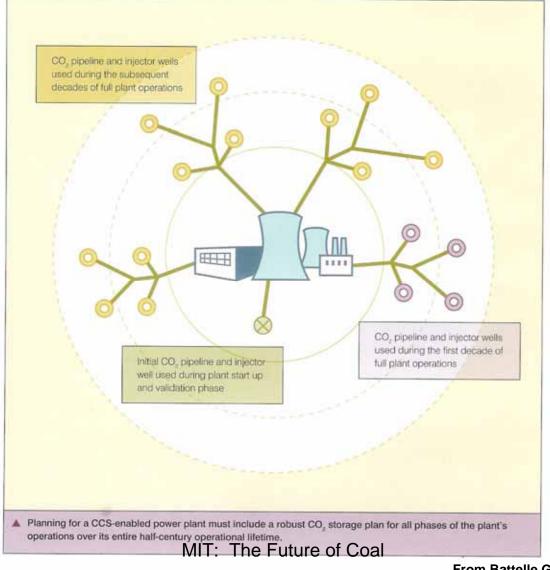
* Incremental capital costs are for a new-build plant


** Incremental COE impact for Illinois #6 coal with 99.3 % PM reduction, 99.4% SOx reduction, and >90 % NOx reduction.

*** When this is added to the "no-control" COE for SC PC, the total COE is 5.5 c/kW_e -h.


Note: To reduce emissions by a factor of two further would increase the cost by about an additional 0.25 ϕ/kW_e -h.

Today's high levels of emissions control increase the cost of electricity by $\sim 1 \text{ }\text{e}/\text{kW}_{e}$ -h out of about 5.5 e/kW_{e} -h or about 20 %.


Carbon Capture and Sequestration (CCS)

Location of Saline Aquifers, Oil and Gas Fields, and Coal Plants

A Potential CCS Power Plant Project

CO₂ Capture Through Sequestration*

Technology	PC	IGCC
CCS Step	¢/kW _e -h	¢/kW _e -h
Capture	2.7	1.21
Compression	0.6	0.4
Transport	0.19	0.18
Injection	0.68	0.64
Totals	4	2.4

• There are no apparent technical or economic show-stoppers to CCS today.

• Bus Bar COE increase in about 50%.

* Costs are estimates for existing CCS technology with Illinois #6 Coal; they will vary with coal type, with generating technology, with site and with reservoir properties. Here, they are meant to be indicative of relative magnitude.

The Future of Coal

- Although the COE for IGCC is lower for Bituminous coal, differences narrow for lower rank coals and at elevation; cost improvements for PC could further narrow the gap. Also, Oxy-fuel PC looks competitive.
- It is too early to pick winners for coal-based power generation with capture.
- Emissions from coal-based power generation can be very low; and with CO₂ capture, even lower, to the extent of really being very clean.
- With CO₂ capture and sequestration, coal can provide electricity at a cost competitive with wind and nuclear.
- Thus, coal would appear to continue to be an economic choice for <u>baseload</u> generation of very low emissions electricity, including low CO₂ emissions.

CCS – Findings and Observations

- Technologies for CO₂ capture with generation are all commercial, but will benefit from operation at scale to improve cost/performance
- Current information indicates that it is technically feasible to safely store large quantities of CO₂ in saline aquifers, and the storage capacity of such aquifers is very large. However, there are issues that require resolution
- Broad range of regulatory issues require resolution (permitting, liability, monitoring, ownership,...)
- Need to gain political and public confidence in the safety and efficacy of geologic sequestration

MIT Coal Report Recommendations

- Solid technical program to resolve scientific & technical issues associated with injection & storage of Gt quantities of CO₂/yr
- In the U.S., 3 to 5 large-scale CCS demonstration projects of 1 million tonnes CO₂ per year, using different generation technologies, focusing on different geologies, and operated for several years to resolve outstanding technical, scientific, liability, policy, and regulatory issues
- Effectively demonstrate dynamic operation of fully-integrated infrastructure systems including coal conversion, CO₂ capture, CO₂ transport, and CO₂ injection in a continuously operating manner over extended time periods.

This research and demonstration program is needed to develop the required information in a timely manner so that we have robust technology options available to apply when society decides to manage CO₂ emissions from power generation and other major stationary sources.

Thank you