

National Capacity Development Training of Trainers (TOTs) Workshop on

Developing and Implementing Mitigation and Preparedness Water Scarcity and Drought (WS&D) Management Plans Zaragoza - Madrid, Spain, May 6-9, 2014

Socio-economic impacts of droughts and economic instruments

Alberto Garrido

Deputy Director, CEIGRAM
Professor of Agricultural Economics and Social Sciences
Universitdad Politécnica de Madrid, Spain

Policy challenge

Table 1: Ten Global Risks of Highest Concern in 2014

No. Global Risk				
	1	Fiscal crises in key economies		
	2	Structurally high unemployment/underemployment		
\subseteq	3	Water crises		
	4	Severe income disparity		
	5	Failure of climate change mitigation and adaptation		
	6	Greater incidence of extreme weather events (e.g. floods, storms, fires)		
	7	Global governance failure		
	8	Food crises		
	9	Failure of a major financial mechanism/institution		
	10	Profound political and social instability		

Source: Global Risks Perception Survey 2013-2014.

Note: From a list of 31 risks, survey respondents were asked to identify the five they are most concerned about.

Source: World Economic Forum, 2014

Policy challenge

Source: World Economic Forum, 2014

Policy challenge

Content

- 1. Framework for thinking about drought socioeconomic impacts
- 2. Economic impacts
- 3. Economic instruments
- 4. Virtual water trade
- 5. The role of insurance

1. Framework for thinking about drought socio-economic impacts

1. Framework for thinking about drought socio-economic impacts

Categorisation of drought impacts

Note: Notation for Domains Residential Sector (RS); Economic sector (ES) and Environment (EV)

	Type of impacts			
	Tangible	Intangible		
	(Market impacts)	(Non-market impacts)		
Direct	Urban Water Supply (RS)	Welfare impacts (RS)		
	Agricultural and Livestock	Environmental impacts (EV)		
	Sector (ES)	- Aquatic ecosystems		
	Hydroelectricity (ES)	-Forest ecosystems		
	Fishfarm (ES)			
	Recreational Uses (ES)			
Indirect	Impacts on the Agro-	Humans health and disease		
	industrial sector (ES)	exposure		
	Agricultural Employment			
	(ES)			
	Tourism and service sector			
	(ES)			

Source Hernández-Mora, N. Marina Gil, Alberto Garrido, Roberto Rodríguez-Casado. (2012). *La sequía 2005-2008 en la cuenca del Ebro: vulnerabilidad, impactos y medidas de gestión.* UPM-CEIGRAM-Madrid. ISBN 978-84-695-7228-3.

	Se ctor	Type of Impact	Methodology	R eliability	Value (Million €)	% of important
		Alleviation and m itigation measures	Gathered from government sources	High	136.34	13.63
	Urban water supply	Water supply companies	-	H ig h	0	
		Additional private costs	Estimated	Low	15.89	1.59
		Alleviation and m itigation measures	G athered from government sources	High	29.03	2.90
		Insurance claims and indemnity losses	Estimated with data from ENESA	R ea son able/Indicativ e	22.81	2.28
	Agriculture and lives to ck	Reinsurance im pacts	Estimated from data of the CCS	R ea son able/Indicative	23.80	2.38
		Value of agricul tural production	U PM modeling approach	H ig h	384.84	38.48
		Livestock production and health	Estimated from various sources	High	0	
	Hy dropow er	Cost of extra energy	UPM approach 0	H ig h	385.00	38.50
		Aquaculture		H ig h	0	
	In d u stry	Cut flowers and greenhouses	UPM with industry data	H ig h	0	
		Forest products	Governmentestimates	H ig h	2.34	0.23
		Navigation		R ea son able/Indicativ e	Unknown	
	Recreatio nal	Recreational and sports fishing	Estimates from sectoral	R ea son able/Indicative	0	
	uses	Ski in g	studies and official data	R ea son able/Indicativ e	Sign if ic ant bu t un k no w n	
		TOTAL DIRECT	TANGIBLE COSTS		1000.05	100
	A gro -i nd u stry		W.D.V. 1.1:	H ig h	589.04	98.93
	Em ployment		U PM modeling approach	H ig h	N ot s ig ni fi can t	
	To u rism		Estimates from sectoral studies and official data	Low	6.36	1.07
		TOTAL INDIREC	CT TANGIBLE COSTS		595.4	100
			Benefit transfer	R ea son able/Indicativ e	0.23	0.01
le	Social w ater uses			R ea son able/Indicativ e	0.55	0.02
	2.5 00			R ea son able/Indicativ e	1.16	0.04
	Risk perception			Low/Doubtful	2861.19	99.62
	En v iro nm en t			R ea son able/Indicativ e	8.86	0.31
	TOTAL DIRECT INTANGIBLE COSTS					100

Direct Impacts

Agriculture:

- Rainfed agriculture
- Irrigated agriculture
- Livestock

Urban sector:

- Households' welfare
- Institutional customers
- Industries/services
- Parks and street cleaning
- Tourist sector
- Energy
- Environment

Indirect Impacts

Agrifood sector

- Food processing industries
- Ag. Input industries

Urban sector business:

- Hotels, restaurants, bars
- Tourist industry
 - •Golf courses, resources

- •Droughts have direct impact on domestic water supply and on water-dependant economic sectors, such as irrigation and hydroelectricity production, Agro-industry, on water and precipitation-dependant, and on other economic activities.
- •Non-market impacts include social welfare reductions and impaired environment.
- •The cost of the measures implemented to mitigate, prevent or alleviate the impacts of drought can also be **attributable** to the economic cost of the drought.
- •Existing information on economic impacts of droughts is scarce, incomplete, unreliable and scattered
- •Drought impacts **on natural ecosystems** are difficult to value in economic terms.

Agricultural Impacts

Figure 3: Key entry points for policy and investment used in modeling

3. Economic instruments

Source: Garrido, A. and A. Gómez-Ramos. "Risk Sharing Mechanisms supporting planning and policy" En Iglesias, A., A. Cancelliere, F. Cubillo, L.Garrote y D.Wilhite. (Eds.). *Coping with Drought Risk in Agriculture and Water Supply Systems. Springer.* EEUU. 133-151. 2009.

3. Economic instruments

Conceptual map of the measures applied on agriculture (in Spain)

Source: Nuria Hernández-Mora, Marina Gil and Alberto Garrido Assessment Report Ebro Case Study – Droughts Prempt Project http://www.feem-project.net/preempt/

4. Virtual water trade

Some water shortage combinations foreseen by 2050

GREEN	Green shortage	Green freedom
	<1300 m ³ /p/yr	>1300 m ³ /p/yr
BLUE		
Blue shortage <1000m³/p/yr	a Iran,Pak,Jordan Eg,Eth,India, China	b Kyrg, Czeckosl, Les, S Afr
Blue freedom >1000m ³ /p/yr	C Jap,Bangl,N+SKor, Nga. To,	d Zimb,Ghana, Ang,Botsw, Chad,Ke,Mali,Namib, Sud, Ta,Za,Zimb

Some policy implications

GREEN	Green shortage	Green freedom
GREEN	Green shortage	Sicen necacin
	<1300m ³ /p/yr	>1300m ³ /p/yr
BLUE		
Blue shortage <1000m³/p/yr	a 46 % of world pop	b 14% of world pop
	 horizontal expansion food import radical water productivity increase 	 upgrading rainfed agric/ rainwater harvesting
Blue freedom >1000m ³ /p/yr	C 21% of world pop	d 19% of world pop
	irrigation expansion	upgrading rainfed agricirrigation expansion

Flankenmark and Rockstrom in (2011) in Garrido, A. y H. Ingram (Eds). *Water for Food in a Changing World*. 2nd Rosenberg Volume Series. Routledge Publishers. 2011. Londres.

4. New irrigation concepts for the 21st century

Agricultural drought risks can be insured against:

- Considered a systemic risk (expensive reinsurance)
- Needs subsidies (private sector, reluctant)
- •Technically, more difficult than single-peril insurance (Hailstorm

Agricultural drought risks can be insured against:

- •Single peril insurance
- •Yield insurance (multiperil insurance)
- •Index insurance
 - -Rainfall insurance
 - -Satelite insurance

Positive

Direct Assessment

Lower Cost Negative

Asym Information Cost

Lack of demand Basis risk

- Problems related to asymmetric information:
 - Due to the differing ability of agents and principal to discern the agents' risks because of costly monitoring
 - AGENTS: FARMERS/BORROWERS
 - PRINCIPAL:
 - INSURANCE COMPANIES
 - THE GOVERNMENT
 - Banks
 - Two classical problems

No clear evidence of moral hazard problems in agricultural insurance, especially when:

- With records of individual farmers
- Index insurance (weather derivatives)
- With deductibles
- With bonus-malus
- With low coverages

But, abundant evidence of moral hazard exists in the area of 'rural banking' (especially in cases of public agencies)

- Two classical problems:
 - <u>Adverse selection</u>: Inability of the insurer to separate low-risk from high-risk agents.

Problems related to incomplete markets:

- Market-based Agricultural insurance is extremely limited
- Lack of collateral makes borrowing expensive or impossible (problems of rural banking)
- Forward contracting is very scarce
- Poor quality-graded and standardisation imposes in situ inspection of harvests

Thank you

alberto.garrido@upm.es

www.ceigram.upm.es
www.fundacionmbotin.org

