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» 1. Introduction

Land-cover data are important and necessary for supporting sustainable development goals, maintaining biodiversity,
and monitoring natural resources.

Fine-resolution land-cover monitoring at the regional or global scale is regarded as an important scientific goal, while
it 1s usually time-consuming and involves a lot of manual participation.
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» 1. Introduction

Over past decades, the quickly development of remote sensing techniques as well as storage and computation capabilities, the global

land-cover mapping makes great progresses, a series of global land-cover products have been continuously released ranging from

1km~10m. The overall development trend is from low resolution to high resolution and from single-epoch land-cover mapping to

time-series land-cover change monitoring.
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» 1. Introduction

There is huge uncertainty in the understanding of global land cover changes.

There are great differences between different monitoring datasets. Winkler et al. quantitatively calculated
the global annual total land use change area ranging from 0.249 x 10°® km? (ESA CCI product) to 1.123x10°
km? (NASA MCD12Q1 product).

Table 1 Comparison of land use/cover datasets.

Dataset LUC categories included Compared time Annual gross land use change
petiod (mean t standard deviation in 103 kmZ a~1)
HILDA +
LUH2'4 All 1960-2015 302 +£125 721+ 88
HYDE3.2" cropland Cropland (2) 1960-2015 187 £ 82 246 41
HYDE3.2'3 pasture Pasture/rangelands (3) 1960-2015 5725 420 £ 71
SAGE cropland’® Cropland (2) 1960-20M 20374 253+37
Hansen GFC forest®® Forest (4) 2000-20122 26527 270 £ 21
ESA CCI®7 All with combined grassland (3 + 5) 1992-2015 249 +165 578 40
MODIS®8 All with combined grassland (3 + 5) 2001-2015 1123144 574 £43

Comparison of annual gross land use/cover (LUC) change (all transitions between included LUC categories or sum of gains and losses for individual LUC categories) of different LUC change datasets
with HILDA + for corresponding periods.
3Hansen GFC covers forest gain only between 2000 and 2012 (no annual dynamics).

Winkler, K., et al. (2021). Global land use changes are four times greater than previously
estimated. Nature Communications, 12, 2501



» 1. Introduction

There is great uncertainty in the total amount and change of global forest cover.

Chen et al. (2020 RS) quantitatively analyzed the total global forest change area of six products from 2001 to
2012, ranging from a decrease of 1.6 x 10° km? (UMD GLAD Forest product) to an increase of 1.7 %106 km?
(Vegetation Continuous Fields product).
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Chen, H., Zeng, Z., Wu, J., et al. (2020).
Large uncertainty on forest area change in the
early 21st century among widely used global
land cover datasets. Remote Sensing, 12(21),

3502.



> 1. Introduction

The Landsat series: long-term data record(50years), higher spatial resolution (30-60m), free approach(USGS,
CEODE). NASA funded some Landsat reflectance production project: LEDAPS and WELD.

Cloud computing platform, represented by Google Earth Engine, liberates issues such as data collection and pre-

processing, and also provides a computing and storage platform.

Challenge: can we reconstruct the history of global land cover from long time-series Landsat stacks?

Google Earth Engine

A planetary-scale platnforrﬁ,for k/
Earth science data & analysis

Powered by Google's cloud infrastructure

P Watch Video
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p 2. Quantitative pre-processing for Landsat imagery

Background

Surface reflectance is a necessary product for quantitative remote sensing, especially in the long-term or
large-area land cover monitoring with multiple remote sensors

(Surface reflectance is the basis for developing remote \
sensing model:
Forest change monitoring,
Water quality monitoring,
Crop growth monitoring.......

N /

/Surface reflectance is the basis of surface parameters A
mversion:

VIS. BRDF/Albedo-
FAPR. GPP/NPP......

N /




p 2. Quantitative pre-processing for Landsat imagery

Background
The Landsat series: long-term data record(40years), higher spatial resolution (30-60m), free approach(USGS,

CEODE)
NASA funded some Landsat reflectance production project: LEDAPS and WELD




p 2. Quantitative pre-processing for Landsat imagery

Flowchart of quantitative pre-processing — Flowchart

* Due to the scattering and absorption of atmosphere, the reflectance sensed by the sensors (TOA SR) cannot be equated
with the surface reflectance (BOA SR);

* As variances of slope and aspect cause the variation in observed reflectance for similar targets, the SR imagery in
terrain areas need to be topographically corrected.

Time series Landsat imagery
[

v v
OLI optlcal radiance ey e e
imagery
' l
Topographical correction Single/Multi-temporal cloud Single channel temperature
using C-correction method and shadow detection methods retrieve method
// ___________ L __________ ~ N

Absolute correction
(MODIS-based method)

Relative correction
(Radiometric normalization)

~——— -

———



) 2. Quantitative pre-processing for Landsat imagery

Topographical correction — Theoretical basis

Topographic correction 1s an important step in the pre-processing of fine-resolution remote sensing images. It
includes compensation for differences in solar irradiance and minimizes the variation in observed reflectance
for similar targets with different slope and aspect.

cosO; + c(4)
cosi + c(4)

pr(d) = pr(1) X
py 1s the corrected reflectance observed for a horizontal surface, pr 1s the reflectance observed over sloping
terrain, O, 1s the solar zenith angle, i is the relative solar incidence angle and ¢ 1s the correction coefficient:

cosi = cos O X cos B + sin B4 X sin B¢ X cos(pr — @)

where 07 1s the slope angle, @7 is the aspect angle and @, is the azimuth angle. 8 and 6, are derivations of the Digital
Elevation Model (DEM). The correction coefficient, c, is a wavelength-dependent variable and is derived from a semi-
empirical function:

p(l) =aXxcosi+b

where ¢ = b/a, a is the slope and b is the intercept of the linear relationship between the SR and the relative solar
incidence angle



p 2. Quantitative pre-processing for Landsat imagery

Topographical correction — Results

The comparison indicated that the topographical correction could efficiently remove the radiometric
difference caused by the terrain slope.

After correction
UOI)IILIOD 10Jog




p 2. Quantitative pre-processing for Landsat imagery

Atmospheric correction — Theoretic basis

Atmospheric effects:
Scattering and absorption

At-sensor Radianc7 Q
Radiative transfer process between +

surface reflegtance |pro- and as-

r‘[bp of Atmos here l_“_‘.____,...........................................A..........‘...................................----I-:
sensor reflectance proa

Absorption

T(B)T(0v)KPTOC v
14SKpTOC AN

Scattering

ProaTPpath [T

These unknown parameters are
decided by the atmospheric
components (aerosol, water vapor
and ozone).

Bottom of Atmosphere

Land surface




p 2. Quantitative pre-processing for Landsat imagery

Atmospheric correction using MODIS products and 6S model

Synchronization:
Landsat TM/ETM+/OLI and MODIS Terra sensors share the same polar orbit, with Landsat observations occurring
approximately 0.5h before MODIS observations;

Atmospheric products:
MODIS could provide high resolution( 0.05 degree) and accurate atmospheric products including AOT. WV and

OZONE.
Product ID Product description Data field
MOD04 1.2 L2 Aerosol, 5-Min Swath 10km Optical Depth Land And Ocean

L2 Total Precipitable Water Vapor, 5-
MODO0S L2 Water Vapor Near Infrared
Min Swath 1km and Skm

L2 Temperature and Water Vapor
MODO7_ 1.2 Total Ozone
Profiles, 5-Min Swath Skm



p 2. Quantitative pre-processing for Landsat imagery

Atmospheric correction using MODIS products and 6S model

MODIS Atmospheric products
(Aerosol Optical Depth, Water Vapor

and Total Ozone)

Step1: interpolation of MODIS products;

o Sequential kriging interpolation at Landsat 8 surface
Step2: building look-up table between global scale Letl cetange produet
atmospheric products between correction , 1
. . . g e Landsat 8 Per-pixel atmospheric
coefficients using 6S model; Reprojection and clipping - ——
v l v 1
Step3: per-pixel atmospheric correction using = 2 3
. oy - -
look-up tables and the aerosol optical depth s S G Atmospheric correction
d S é = é S g | I e coefficients images
pro uct. g S IR e = mp (UTM projection with
= - = 8B 30 m resolution)
e = 5]
g 3 =
_ — <
—
C_andsat geometric imaging ——
parameters
6S radiative transfer model > Look-up table

( DEM data

Hu, Y., Liu, L., Liu, L., Peng, D., Jiao, Q., & Zhang, H. (2014). A Landsat-5 atmospheric correction based on
MODIS atmosphere products and 6S model. I[EEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, 7(5), 1609-1615.




p 2. Quantitative pre-processing for Landsat imagery

Kriging interpolation for MODIS atmospheric products

MODIS atmospheric products suffer the problem of missing data especially for aerosol optical depth product,
so we firstly needed to interpolate these missing data using the kriging method.

Aerosol optical depth Water vapor Total ozone

Before

After




p 2. Quantitative pre-processing for Landsat imagery

Visual comparison of the effects of atmospheric correction

Spectral Profile
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Spectral Profile
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p 2. Quantitative pre-processing for Landsat imagery

Atmospheric correction — Results

0 450 900  1,800km 0 450 900  1,800km

Figure (a). TOA reflectance displayed with true-color composite of China in 2013.
(b). Surface reflectance displayed with true-color using the same contrast stretch as (a)

Wang Y, Liu L, Hu Y, et al. Development and validation of the Landsat-8 surface reflectance products using a
MODIS-based per-pixel atmospheric correction method[J]. IURS, 2016, 37(6): 1291-1314.



2. Quantitative pre-processing for Landsat imagery

Cross-validation using MODIS daily products (MOD09A1)

The RADI SR (produced by the proposed method) is greatly consistent with MODIS daily SR product

(MODO09AT1) with a mean R2 0f 0.93 and an RMSE of 0.023.
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p 2. Quantitative pre-processing for Landsat imagery

Cross-validation using Landsat SR provided by USGS

The RADI SR (produced by the proposed method) is greatly consistent with USGS SR product with a mean
R2 0f 0.97 and an RMSE o0f 0.01.
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p 2. Quantitative pre-processing for Landsat imagery

Relative correction — Radiometric normalization

Question
* Landsat long time-series imagery (1972-now);

* The MODIS-based atmospheric correction method is only suitable for Landsat imagery after 2000 because of the lack
of MODIS atmosphere products before 2000;

* How to guarantee the radiometric accuracy for long time series Landsat imagery?

Solve method

Atmospheric correction Radiometric normalization Long time-series surface

(After 2000) (Before 2000) reflectance




p 2. Quantitative pre-processing for Landsat imagery

Radiometric normalization — Flowchart

Landsat time-series data

Before 2000 After 2000

The key of radiometric normalization method
is to use the corrected SR imagery after 2000
as reference to normalize the Landsat image
before 2000 according to the imaging date.

radiometric atmospheric
normalization correction

Liu, L., et al. (2013). Mapping afforestation and deforestation from 1974 to 2012 using Landsat time-series
stacks in Yulin District, a key region of the Three-North Shelter region, China. Environmental monitoring and
assessment, 185(12), 9949-9965.



p 2. Quantitative pre-processing for Landsat imagery

Radiometric normalization — Method

1. A multivariate alteration detection transformation was used to select the “no-change’ pixels between
reference image and target image,

2. using the “no-change” pixels, the relative radiometric normalization coefficients was determined based on
orthogonal linear regression ,

3. the coefficients were applied to normalize the target image

bandl band?2 band3
0.2 0.25 0.25
y=1.128x- 0.002 y=1.113x+ 0.002 y=0.897x+ 0.003
RZ=0.997 RZ=0.996 R?=0.997
0.2 + . 2 4
0.15 ~ 0.2
0.15 - 0.15 +
0.1 -
0.1 1 0.1 |
0.05 - 0.05 - 0.05 -
0 0 0
0 0.05 0.1 0.15 0 0.05 0.1 0.15 0.2 0 005 01 015 0.2 025 03

scatter plots of “no-change” pixels, X-axis is target image, Y-axis is reference image



p 2. Quantitative pre-processing for Landsat imagery

Radiometric normalization — Results
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Mosaic of reference and subject
images. The left is a mosaic of
original TOA reflectance images, and
the right is a mosaic of reference
reflectance 1mage and normalized
images which displayed with same
stretch parameters as left. RGB
composite: R (band 3), G (band 2), B
(band 1).

HU, Y, LIU, L., CACCETTA, P., & JIAO, Q. (2015). Landsat time-series land cover mapping with spectral
signature extension method. Journal of Remote sensing, 19 (4), 639-6560.



p 2. Quantitative pre-processing for Landsat imagery

Landsat datacube (Global 3-level land grid)

1) The across-track scene overlap distance increase as the latitude increases;
2) The global grid was defined in an equal area projection to ensure that the surface area sensed by each
Landsat acquisition was sampled with the same spatial grid density.

Therefore, in order to improve the Landsat use efficiency, we should abandon traditional storage pattern with
the scene as the management unit.
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The sinusoidal equal area projection was used as it provides a global uninterrupted projection. The grid spacing
was set sufficiently small to capture the variable geographic location and extent of Landsat acquisitions and scene
overlap imposed by the Landsat sensor and orbit geometry (Kovalskyy and Roy, 2013).

Kovalskyy, V. and D. P. Roy (2013). "The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface

observations and implications for global 30m Landsat data product generation." Remote Sensing of
Environment 130: 280-293.




p 2. Quantitative pre-processing for Landsat imagery

Landsat datacube (Global 3-level land grid)

The grid is defined in the sinusoidal equal area projection and is composed of 6,138,864 land grid grids
spaced every 5.559752 km in the X and Y axes of the sinusoidal coordinate system

Minimum land grid naming rule: LTS Ref hh26vv05h3v4 p17r23 2015243.dat
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Landsat datacube (Global 3-level land grid)
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p 2. Quantitative pre-processing for Landsat imagery

Landsat datacube (Global 3-level land grid)

A total of 6500 Landsat imagery over China has been tiled into Landsat datacube, and the temporal frequency
of Landsat imagery in each geographical location was calculated. The results indicated that the tiling process
could improve the Landsat use efficiency, especially over the overlapping areas.

High : 41

Zhang, X., Liu, L., Chen, X,, Xie, S., & Gao, Y. (2019). Fine Land-Cover Mapping in China Using Landsat
Datacube and an Operational SPECLIib-Based Approach. Remote Sensing, 11(9), 1056.
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Landsat datacube — Restoration of unclear pixels (cloud, shadow pixels)

Cloud and shadow contamination is inevitable especially for low latitude areas. For multi-temporal
classification, the cloud and shadow should be restored beforehand using spatio-temporal methods.

Cloud-free Cloudy
image at f;
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Zhu, X., et al. (2012). "A Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick
Clouds in Landsat Images." IEEE Geoscience and Remote Sensing Letters 9(3): 521-525.

Chen, J., et al. (2011). "A simple and effective method for filling gaps in Landsat ETM+ SLC-off images."

Remote Sensing of Environment 115(4): 1053-1064.
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Landsat datacube — Restoration results

2015030 2015046 2015062 2015078 2015094 2015110 2015135 2015142

2015078 2015094 2015110 2015135 2015142

m 201%199 2015206 20|m< zomzz 20|<23|

Time series Landsat SR after filling
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p 3. Forest disturbance monitoring and biomass mapping

Background

Within the framework of the North American Carbon Program (NACP), the North American Forest
Dynamics (NAFD) project has evaluated forest disturbance and regrowth history for the conterminous U.S.
by combining Landsat observations and field measurements (Goward et al. 2008).

The NAFD project uses the Vegetation Change Tracker (VCT), an automated forest change analysis
algorithm, on temporally dense (annual or biennial) Landsat Time Series Stack (LTSS) of images and
produces forest disturbance data products (Huang et al. 2010). The algorithm consists of two major steps: 1)
individual image analysis and 2) time series analysis.

VCT produces a disturbance product where each pixel is labeled as either a static land class (persistent non-
forest, persistent forest, or persistent water) or with the year of change for disturbed forest pixels.

This data set provides the results of time-series analyses of Landsat
imagery for 55 selected forested sites across the conterminous
U.S.A. The output is a pair of disturbance data products for each
site, one showing the first year of disturbance in the time series, the
other showing the last year of disturbance. The time period
analyzed 1s approximately 1984-2009.

NAFD Sample Type
[ FocarPrototype
I o1 1_sample
- ph2_sample

us

Kilometers

J.S. States
- - 0 1875375 750 1,125 1,500
Forest -——




» 3. Forest disturbance monitoring and biomass mapping

Background

http://daac.ornl.gov/NACP/guides/NAFD Disturbance guide.html
The first year of forest disturbance map for an area in Mississippi ( p21r37 ) where industrial forestry is
prevalent. The legend details the map classification system. The first three map categories are static classes
which are consistent throughout the time series: persistent non-forest, persistent forest, and water. Forest
change pixels are classified according to the year in which change occurred. Actual disturbance year classes
vary according to the image dates present in each individual LTSS.

[ Persistent Non-Forest
M Pesistent Forest
M water

Pre-1984

I 1986

I 1988

1990

[ 1992

11994

1199

[ 1993

M 2000

M 2002

[ 2005

Kilometers



http://daac.ornl.gov/NACP/guides/NAFD_Disturbance_guide.html

» 3. Forest disturbance monitoring and biomass mapping

Studv Area and experiments

Three North forest program began in 1978 and will be finished in 2050.The project will take place in three stages (1978—
2000, 2001-2020, and 2021-2050) following eight engineering schedules.

The key goal of this program in the following decades was to improve forest coverage in arid and semiarid China from
5% to 15% by using this program as the primary method to combat desertification and to control dust storms. Wang et al

(2010)
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» 3. Forest disturbance monitoring and biomass mapping

Study Area and experiments

©

©

1

1 ©

GPS Longitude Latitude Age
52 38° 47'23.79"N 110° 15'6.32"E 5-10
55 38° 03'30.11"N 110° 284.52" E 10
56 38° 04'5.12" N 110° 27'43.93" E 10
57 38° 05'23.13" N 110° 27'9.58"E 10
60 38° 07'32.83" N 110° 23'50.79" E 40
63 38° 18'1.86" N 110° 11'51.32"E 43
64 38° 18'0.97" N 110° 11'5592"E 45
65 38° 17'48.37" N 110° 12'7.67"E 8
861 38° 17'50.40" N 110° 12'9.99" E 30
66 38° 18'32.21" N 110° 11'52.79" E 30
67 38° 15'26.22" N 110° 15'8.57"E 13
72 38° 15'36.94" N 110° 14'46.20" E 28
69 38° 15'49.87" N 110° 15'16.59" E 26
70 38° 15'48.32" N 110° 1522.23"E 30
71 38° 15'54.28" N 110° 15'44.55" E 30
36 38° 17'25.99" N 110° 00'35.01"E 5-10
98 38° 12'39.24" N 109° 45'38.38"E 40
74 38° 04'14.37" N 109° 49'56.10" E 10
75 38° 04'27.08" N 109° 49'58 32" E 12
76 38° 01'48.77" N 109° 50'18.88" E 40
77 38° 01'54.07" N 109° 50'29.76" E 40
78 37° 59'26.16" N 109° 50'28.65" E 40
S1 38° 05'5.84" N 109° 31'4438" E 30
79 38° 06'14.97" N 109° 29'5997" E 40

S 38° 06'29.57" N 109° 26'29.01"E 40
S0 38° 16'36.94" N 110° 07'37.95" E 6-12

27 sites investigated for validation of

forest changes forest types, Age
Density, Height in 2012 and 2013
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3. Forest disturbance monitoring and biomass mapping

Study Area and experiments
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» Study Area and experiments
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» 3. Forest disturbance monitoring and biomass mapping

The flowchart of disturbance monitoring and biomass mapping

Field measurement Time-series Landsat TM images Step 1: Time-series images radiometric
correction;

- * Time-series Landsat TM GSR |
T Plot data v . .
harvesting v ¥ Mappingafforestzation Step 2: Afforestation and deforestation
DBH T and deforestration . .
ree age " mapp n g .
Validating > Afforestation age
y y Step 3: Forest biomass mapping using
Fresh weight DBH of . .
of harvested harvested emplrlcal mOdel.
tree tree
1 : 5
Dry weight > E E > Time-series AGB mapping
= .
"% |
4
v

Allometric model o \
Plot AGB . Analysis on biomass change of artificial forest in :
: Yulin district :



3. Forest disturbance monitoring and biomass mapping

Time-series images radiometric correction

Acquisition dates (yyyy-mm-dd) of collected Landsat images

2015 -
2010 -
Path/Row Acquisition date 2005 -
2013-08-22, 2012-06-30, 2011-07-22, 2010-07-17, 2009-06-30,
2008-09-15, 2007-08-12, 2007-05-24, 2006-09-10, 2005-07-29, 2000 -
L5-8 2004-09-12, 2003-08-17, 2002-08-06, 2001-05-31, 2000-05-20,
127/33&34  1998-07-02, 1996-06-10, 1995-06-08, 1994-08-24, 1993-06-18, = 1995 -
1992-07-17, 1990-08-29, 1989-09-11, 1988-09-24, 1987-05-17, O
1986-08-02 1990 -
MSS 1985 -
373ag3q  1978-08-01,1977-08-15, 1976-09-25, 1975-04-22, 1974-05-24
------------------------------------------------------------------------ 1980 -
MSS 1978-09-23, 1977-07-07, 1976-06-26, 1975-06-14, 1973-11-24
136/33&34 ’ ’ ’ ’ 1975 - Ny
1970

4/1 5/16 6/30 8/14 9/28
Date



p 3. Forest disturbance monitoring and biomass mapping

Time-series images radiometric correction

*Terrain illumination correction. All the Landsat images were corrected using a C-correction method
(Teillet et al. 1982) and ASTER DEM (30m) data, using a software developed by CSIRO (Wu ef al. 2004).

Image atmospheric correction for the base image. The base image (acquired on June 3, 2009) was
corrected using an atmospheric correction algorithm adapted from the MODIS 68 radiative transfer approach.

*Production of ground surface reflectance (GSR) images based on a relative normalization method.
*We developed a procedure to derive GSR products based on the relative radiance normalization algorithm
(Cohen ef al. 2003). An iterative re-weighted Multivariate Alteration Detection (MAD) algorithm by Cohen
et al. (2003) was used to detect the invariant target pixels. The Landsat DN images from Step 2 were then
matched to the GSR base 1mage from Step 3 by least-square fitting for these invariant pixels, and the time-
series Landsat GSR 1images were produced




» 3. Forest disturbance monitoring and biomass mapping

Multi-phenological forest z-score for forest mapping

An integrated forest z-score was designed to discriminate forest and non-forest pixels in multi-spectral
images (Huang et al. 2009). With training forest pixels determined according to ground surveys or visual
interpretation, the mean b; and standard deviation (SD;) of band i for the raining forest samples can be
calculated from the GSR image. The forest z-score (FZ.) value for that band 1s defined:

(b —bi

Fzi= 0=t IFZ = \/L S (FzZy
SDi NB T

=@ Pesert
7 =@ N ater

iy Persisting Forest
=Pt Decforestation 2009
== A fforestation 1985
e=@= A fforestation 2002
e Afforestation 2004
== Cropland

CL61
Ll |
1961 |
G361
686]

061 |
16|
1007
G007 |
(lo7
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Vegetation Change Tracker (VCT) method based on IFZ

Flowchart to map land covers and forest changes using the dense time series of IFZ and reflectance data.

ir?\i::;: ai?((il Dense time-seriesIFZand Savitzky-
flag B7 reflectance data Golayfilter
- v

Originaland smoothed IFZ data, B7 reflectance

v

Non B7 refl. <0.1
IFZ>2.5 exceptfor 3 epochs __)[vegetauo ]—)[ or >5 epochs]_) Water
‘1, No J No

<€— IFZ<2.0 exceptfor 3 epochs Bare land

‘1, No
Yes,
Croplandrules —> Cropland

‘l,No

Forestchangesrules —(lﬂ Afforestation

J c2

Deforestation

Persisting
forest




3. Forest disturbance monitoring and biomass mapping

Forest disturbance results
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2007-2003 1992-1987
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» 3. Forest disturbance monitoring and biomass mapping

Forest disturbance results

Epoch-wise afforestation and deforestation increments between 1974 and 2012

240000 r - 3500
e=@== A fforestation
210000 | - 3000
e=fg= Deforestation
%\ 180000 2500 -
S 150000 a
& 2000 =
= 120000 =3
=
= 1500 &
s 90000 =
< 60000 1000 %
30000 ‘ _ 500
0 1= & i 0
—_ —_ —_ —_ —_ — [\®) b b
O O O O O O [ [} ()
| R | o0 o0 O O () [} —_—
('S (@ ] (] o0 (OS] o0 w2 (@ ] (8]
Year

These two afforestation peaks agree with the start of TNSFP in 1978, and another strong political promotion
of afforestation after 2000, through an initiative proposed by Premier Zhu Rongji in 1999 called "Returning
cultivated land to forest and mountain greening". There was also a small peak of deforestation in 2009,
clearly visible in the plots, which was caused by basic infrastructure construction projects (such as road

construction, city and airport development, mining industry, etc.) promoted by the government after the
global economic crisis in 2008.
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Collection of validation data

27 sites investigated for
validation of forest changes

forest types, Age Density,
Height in 2012 and 2013

Photos of different frestation sites in the Yuhn dlstrlct (a) afforestatlon of Scots pine in 1980; (b)
afforestation of Chinese pine in 1980; (c) afforestation of Sabina vulgaris in 2003; (d) afforestation of
Chinese pine in 2004
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Accuracy validation

Confusion matrix for the six class land cover and forest change mapping.

Persisting

Bare land Cropland Water Afforestation forest Deforestation Total

Bare land 1302 76 1378
""" Cropnd  s0 e 19 3 64
S Water s W06
 Afforestation s s a7 W 008
 Persistingforest s o sss o6 1
Deforestation g e
"""" Tol 137 s 36 8 65 155 4139

Overall accuracy 89.1%, Kappa coefficient= 0.858.
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Accuracy validation

Table 5. Validation results for the land cover and forest change mapping (pixel counts).

Bare Crop Vvater2004 2003 2003 2002 1985 1982 1980 1981 1980 1980 1975 1965 Persisting D2009

Class | hd land SI S2 S3 SI S1 S1 S2 SI S4 S1 S2 S1  Forest g1 rotal
Bare land 1302 15 5 2 54 1378
Cropland 500 48 10 1 5 4 15 31 614
Water 306 306
2010 ° 9
2009 16 16
2008 4 2 6
2007 1 4 5
2006 2 1 1 ) 13
2005 16 25 41
2004 3 8 5 4 115 135
2003 3 1 4 41 o4 113
2002 1 1 46 26 1 75
2001 71 20 3 1 1 96
2000 3 3 1 1 1 o
1998 2 1 3
1996 1 1 1 1 4 8
1995 1 1 1 3
1994 7 7
1993 1 1
1992 1 1
1990 2 2 1 5
1989 6 1 5 1 4 1 4 22
1988 1 3 7 5 a4 2 7 11 40
1987 1 2 7 1 s 2 8 1 27
1986 16 2 70 14 45 8 7 1 19 5 187
1978 3 1 37 5 30 11 8 16 2 113
1977 2 11 2 23 9 8 5 3 63
Persisting

Forost 35 3 43 3 29 7 10 6 26 559 6 727
D2009 116 116

Total 1337 590 306 38 10 221 342 186 35 143 40 22 33 48 30 605 153 4139
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Accuracy validation
The forest afforestation age information retrieved by the Landsat time series images was significantly related
to measured plot tree age, with a determination coefficient (R?) of 0.824, and a RMSE of 4.32 years.

Temporal detection accuracy of forest changes (epoch difference).

40 y=1.165x-3.763 ™ »
O y . X .
o R =0.824 - a
0 <=l <=2 <=3 <=5  §;; | RMSE=432
s
5
Percent = 20 F
22.2% 57.8% 73.6% 86.5% 97.4% ‘*g
5 10 ,
‘g I 2 1:1 Line
D] Vs
o L
O ’ | | | ]
0 10 20 30 40

Measured tree age



3. Forest disturbance monitoring and biomass mapping

Forest biomass modeling using field data

In 2012, We measured: Diameter (at 10, 30, 50, and 130 cm height), Tree height, Tree age, Fresh weight
and water content (for stems, branches, leaves, coarse and fine roots) for Poplar tree, Chinese Scholar,
Chinese pine.
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Forest biomass modeling using field data

Relationship between above ground biomass (AGB) and diameter, four species together

(PopulussimoniiCarr, poplar tree, Chinese pine, and Pinus sylvestris), and the power function curves was

observed
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Forest biomass modeling based on empirical model

A summary of regression analysis results in the western Brazilian Amazon

Variables Models R
Spectral signature AGBsp = 667.72 — 13.92 _3’{ Joa [}.;5_.
AGByp = 1024.14 — 54.96 < fis 0.16

Texture AGBg; = 164.62 — 2.27 X fiy, 023
AGBy = 134.57 +19.29 < fion 0.39

Combination AGBgp = 480.82 — 8.06 x fpy — 0.98 x ﬁar 76
AGByp = 753.31 — 43.21 % fis + 17.89 > fon 0.50

1) spectral signature led to much better estimation performance than textural images for secondary forest, but
the result was inverse for mature forest;

2) Neither spectral signatures nor textural images could effectively estimate mature forest biomass;

3) A combination of spectral signature and textural images slightly improved secondary forest biomass
estimation performance, but the improvement was considerable for mature forest biomass estimation.

Dengsheng Lu et al., “Aboveground Forest Biomass Estimation with Landsat and LIDAR Data and Uncertainty
Analysis of the Estimates,” International Journal of Forestry Research, 2012. doi:10.1155/2012/436537
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The proposed model for biomass mapping

Biomass=f,(species, soil, water available, climate variables, age)
NDVI=f,(coverage)

Tree Biomass~f;(Tree age)
Plot Biomass = linear(NDVIXexp(age))

450

. 16
400 * Poplar w SopPhora ping 14 |
japonica *
350 =12 - y=10.218x-9.3247 *  , poplar
300 - E R?=0.7103
5:_7250 y:(l_]_748e0.2411x : % 10 ~ ¢® Sophora
@ R?=0.7878 20 g | m. .
% 00 o o japonica
2 150 3 pine
00 AT N
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The comparison between proposed model and VI-based model

AGB density = 9.4574 X SR X [exp(treeage % 0.0225)] — 17.021
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Figure 5. Regional AGB estimation models based on vegetation indices and measured tree age
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Accuracy validation

Statistics of forest AGB and forest area in six counties of Yulin District at different years.

Year Biomass! Biomass? Biomass? Area

(t/ha) (t/ha) (G kg) (km?)

1986 14.35 15.72 5.8 4,048
a0 1792 1930 80 1453
o4 mes uss 06 4617
o002 1842 %47 123 ee2
o003 u7s4 %330 41 7897
2007 182 s 77 9704
2 202 046 a9 10831
a3 2460 uss %6 10831

Total AGE (G kg

|y =0.6843% - 1354 4 .
R2=0.9105 -

1985 1995 2005 2015
Year

Biomass! and Biomass? are the mean AGB density for total forest arca and persisting forest area, respectively;
Biomass? is the total forest AGB ; Area stands for total forest area in six counties Yulin District.



» 3. Forest disturbance monitoring and biomass mapping

Accuracy validation

For the forest area, including persisting forest and subsequently planted forest, has experienced an annual
AGB growth rate of about 1 t/ha over the last four decades.

y=1.0301x - 0.7605 y=0.9823x- 1,936.25 A
R2=0.9879 O 40 R2=(.897

10

AGB density (t/ha)
[\
S

AGB density (t/ha)
[\
S

e}
-

I I 1

0 10 20 30 40 1985 1995 2005 2015
Afforestation age (year) Year

(a) (b)
Figure 8. (a) Mean AGB density of forest at different ages in Yulin District in the last 40 years. (b)
Increasing trend in mean AGB density for persistent forest in Yulin District from 1985 to 2013.



p 3. Forest disturbance monitoring and biomass mapping

Summary

* The afforestation age can be retrieved from the Landsat time-series stacks 1n last forty years (from 1974
to 2013), which was consistent with the surveyed tree ages, with a RMSE value of 4.32 years and a
determination coefficient (R?) of 0.824.

* The AGB models were successfully developed by integrating vegetation indices and tree age, which was
significantly improved using the combination of SR and tree age, with a R* value from 0.50 to 0.727.

* We confirmed a great achievement of the ecological revegetation projects in Yulin district over the last 40
years. It clearly showed a big forest increase in Yulin district from 340,890 ha (13.2% of total district area)
in 1974 to 1124,648 ha (43.8%) in 2012.The total forest AGB 1n Yulin district has increased by 20.8 G kg,
from 5.8 G kg in 1986 to 26.6 G kg in 2013, with a total increase of 360%.

* The results also present a noticeable carbon increment for the planted artificial forest in Yulin district over
the last four decades, with a AGB increase of 1t/ha/year.
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The overview of land-cover mapping methodology

Generally, there are three classification strategies to land-cover mapping.

We proposed a novel and automatic approach, called the SPatial-tEmporal speCtral Library (SPECLIib), which

aims to produce a land cover map with a 30-m spatial resolution at global or regional scale.

Manual Semi-automatic Automatic
Method visual interpretation supervised classification Ppor knowledge, Spectral
library
Texture, color, brightness Spectral signatures from Spectral signatures from
Features . . . e
etc training samples prior library
Accurately determine Determine each pixel using Do T
advantages each parcel using expert training samples etermine each pixel using
reference spectra
knowledge Maybe accurate
National Land Use/Cover
Database of China (Zhang et FROM-GLC (Gong et al., 2013) GLC _FCS30

examples
P al. 2014) (Zhang et al., 2021)

GloberLand30 (Chen et al., 2015)



) The fine classification system in GLC_FCS30 (containing 35 land-cover subcategories)

Globland30 |LCCS Classification System | Fine Classification System Globland30 | LCCS Classification System | Fine Classification System

Rain-fed cropland Mangrove
Salt marsh
Tidal flat
Wetland Wetlands Swamp
Marsh
Flooded flat
Saline

Impervious . .

Impervious surfaces Impervious surfaces
surfaces
Tunda Lichens and mosses Lichens and mosses

Sparse vegetation

Rain-fed cropland Herbaceous cover

Cropland

Tree or shrub cover (orchard)
Irrigated cropland Irrigated cropland
Evergreen broadleaved forest Evergreen broadleaved forest

Deciduous broadleaved forest

Deciduous broadleaved forest Closed deciduous broadleaved forest
Open deciduous broadleaved forest
Evergreen needleleaved forest
Forest Evergreen needleaved forest Closed evergreen needleleaved forest
Open evergreen needleleaved forest
Deciduous needleleaved forest Sparse vegetation Sparse shrubland

Deciduous needleaved forest Closed deciduous needleleaved forest Sparse herbaceous cover

. Bare land
Open deciduous needleleaved forest Bare areas
Mixed forest Mixed-leaf forest
S iedrieat 1oes Bare areas Consolidated bare areas
Shrubland
Unconsolidated bare areas
S o ENGES Shrubland Evergreen shrubland

Deciduous shrubland

METOWInLAA Water body Water body

Permanent . .
Grassland Grassland Grassland snowlice Permanent SnOW/lCC Permanent ice and SNoOw




The overview of GSPECLIib (Global land-cover Spectral Library)

The GSPECLIib has been developed using MCD43A4 and CCI_LC2015. The geographical cell of GSPECLib was set as

1.43° x 1.43° equaling the size of second-level land grid and with a temporal resolution of 8 days. The GSPECLib has
exceeding 300 million spectral data.

GSPECLib

The number of reflectance spectra in each
GSPECLI1b geographical cell

i

The number of land-cover types in each
GSPECLI1b geographical cell




p The overview of GSPECLIib (Global land-cover Spectral Library)

Due to the cloud coverage, spectral similarity of vegetation-related types, the single-date Landsat image is usually not

able to provide sufficient features to accurately classify all land-cover types (such as: deciduous forest and evergreen

forest).

Multi-temporal Landsat SR imagery ‘ ’ Global SPECLIib ‘
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) Global impervious surface mapping from multisourced remote sensing observations

Although the independent optical imagery have been successfully employed for regional or global impervious mapping, accurate
estimation of impervious surfaces remains challenging due to the diversity of urban land covers, leading to difficulties of separating
different land covers with similar spectral signatures;

As the optical imagery only capture the surface reflectance characteristics, while the synthetic aperture radar (SAR) data images
could provide the structure and dielectric properties of the surface materials, the incorporation of multi-source and multi-temporal

remote sensing imagery has been demonstrated to improve the impervious mapping accuracy
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) Global impervious surface mapping from multisourced remote sensing observations

SAR data and multitemporal features are important for accurate land cover mapping
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) Global impervious surface mapping from multisourced remote sensing observations

Using multitemporal Landsat and Sentinel-1 imagery, our automated impervious surface mapping method was integrated
on the Google Earth Engine platform and produced the accurate global 30 m impervious surface products. The results show
that:

* impervious surfaces are mainly concentrated in three continents: Asia (34.43 %), North America (28.04 %) and Europe (24.98 %),

followed by South America (5.89 %), Africa (5.63 %) and Australia (1.06 %). In addition, the zonal statistics indicate that 70 % of the

impervious surfaces are distributed between 30 ¢ N ~60° N.

Meridional Impervious Area

150°w 1200w 90° W 60° W 30°w 0° 30°E 60° E 90°E 120°E 150°E

Zonal Impervious Area

Low:0 High : 0.997



) Global impervious surface mapping from multisourced remote sensing observations

The accuracy of 6 sets of 30-m impervious surface products was verified using 15 typical test areas randomly
selected in the world (a total of 11942 verification points). The results show that the products generated in this
study have the highest accuracy performance (OA=95.1%) , Kappa=0.898), followed by GHSL-2015,
FROM_GLC-2015, GlobeLand30, HBASE-2010 and NUACI-2015.

1.000

0.800

0.600

0.400

0.200

0.000

UL PI. UN. P.N. 0O.A. Kappa

EMSMT-2015 BENUACI-2015 EFROM GLC-2015 wmGHSL-2015 B GlobelLand30-2010 S HBASE-2010

Zhang, X., Liu, L., et al. Development of a global 30-m impervious surface map using multi-source and multi-temporal remote sensing
datasets with the Google Earth Engine platform, Earth Syst. Sci. Data, 12, 1625-1648, 2020



p The overview of GLC FCS30 land-cover dataset

Using time-series Landsat imagery during 2014-2016 and the globally distributed training samples from GSPECLiIb,
we trained the local adaptive classification model at each 5°X5° geographical tile, and generate the first global land-

cover products with fine classification system (GLC FCS30) in 2015.
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IRgfinfed cropland = Closed deciduous broadleaved forest M Closed deciduous needleleaved forest " Grassland
““IHferbaceous cropland 1 Open deciduous broadleaved forest ™ Open deciduous needleleaved forest [ Lichens and mosses
“Aree cropland M Evengreen needleleaved forest B Mixed forest

Irrigated cropland B Closed evengreen needleleaved forest ™8 Shrubland I

Evergreen broadleaved forest 8 Open evengreen needleleaved forest ™8 Evergreen shrubland |

Deciduous broadleaved forest B Deciduous needleleaved forest B Deciduous shrubland B8 Wetland
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P Quantitative accuracy assessment

Using the globally distributed 44503 validation points, which collected from multisourced and high-resolution remote
sensing imagery, the GLC FCS30 1s validated to achieve the overall accuracy of 82.5% and a kappa coefficient of
0.784 at level-0 classification system, and overall accuracy of 71.4% and kappa coefficient of 0.686 at level-1

classification system.
0 20 50 60 70 8 90 120 130 140 150 180 190 200 210 220 Total PA.

10 5305 86 32 281 12 1 4 163 146 0 47 10 66 23 5 0 6181  0.858
20 213 481 0 8 0 0 0 0 4 0 0 0 17 0 13 0 736 0.654
50 65 0 2830 152 82 0 28 17 1 0 0 47 0 0 0 0 3222 0.878
60 82 3 325 3010 175 58 189 99 28 0 10 44 1 1 2 0 4027 0.747
70 10 0 12 136 2469 34 133 15 7 1 10 192 1 2 3 0 3025 0816
80 2 0 0 59 283 545 31 11 2 0 11 29 0 0 0 0 973  0.560
90 31 8 67 840 604 24 783 14 16 0 1 52 0 1 0 0 2441  0.321
120 402 42 64 395 57 39 20 3088 645 21 422 88 17 133 6 2 5441 0.568
130 183 14 9 94 47 7 19 430 3100 311 128 171 14 75 7 0 4609 0.673
140 0 0 0 1 13 12 0 35 39 93 83 5 0 12 0 0 293 0317
150 47 8 0 75 0 3 0 254 218 147 1540 13 0 692 4 26 3027  0.509
180 64 14 12 12 22 8 2 24 23 12 17 585 15 43 89 4 946 0.618
190 38 14 1 1 4 1 1 9 12 0 5 5 384 7 2 0 484 0.793
200 94 1 0 2 3 0 0 114 163 14 415 72 3 4129 14 2 5026 0.822
210 33 15 3 4 57 17 4 13 7 49 28 32 3 15 1455 1 1736 0.838
220 0 0 2 6 6 0 2 8 66 2 13 2 0 74 47 1648 1876  0.878

Total 6569 686 3357 5076 3834 749 1216 4294 4477 650 2730 1347 521 5207 1647 1683 44043
U.A. 0.808 0.701 0843 0593 0644 0728 0644 0719 0692 0.143 0564 0434 0737 0793 0.883 0.979

0.A. 0.714
Kappa 0.686




p The cross-comparisons with several released land-cover products

*  Compared with the CCI_LC and MCD12Q1 (coarse resolution of 300 m and 500 m), our GLC FCS30 shows great advantages in
capturing these spatial details;
* Compared with FROM_GLC and GlobeLand30, the GLC FCS30 outperforms with its greatly diverse over the classification

system, it contains exceeding 30 land-cover types.
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The third-party validation and comparison in the Indonesia

The research of high-precision land cover classification in tropical rainforest area is a challenge. The results of the
third-party nationwide inspection in Indonesia show that GLC FCS30 not only has a finer classification system, but
also has a higher overall classification accuracy (65.69%), which is better than the Globeland30 (61.65%) and
Tsinghua FROM_GLC2015 (57.71%) of the National Basic Geographic Information Center.
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Kang, J. et al. Consistency Analysis of Remote Sensing Land Cover Products in the Tropical Rainforest Climate Region: A
Case Study of Indonesia. Remote Sens. 2020, 12, 1410.



The GLC _FCS30 dataset during 1985-2020 with interval of 5-years

A global time-series 30 m land-cover product with a fine classification system

(GLC _FCS30) was developed.

Using our GSPECLib-based land-cover classification algorithm and time-series Landsat imagery,
which broke through the key technologies of automatic global land-cover mapping and developed a

global land-cover product from 1985 to 2020—GLC_FCS30.

2.00

GLC FCS30 product from 1985 to 2020

change

1.00

(X 10° km?)

—Forest

Cropland
——Shrubland Grassland
23.00 Tundra =—Wetland

= Impervious surface Bare land

GLC_FCS30-1985-2020 area
“
=

—Water body ——Ice and snow

-4.00
1985 1990 195 2000 2005 2010 2015 2020

In the past 35 years, the global forest and
shrubland area has decreased by 2.06 million
km?, cropland has increased by 1.1 million
km?, and impervious surface has increased by
0.58 million km? (an increase of 112.5%).

1985

The impervious surface of the
Yangtze River Delta increased by 4.8
times.
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p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

Most existing global land cover products adopt the strategy of independently classifying
time-series products, which will introduce a large number of "pseudo" changes in related
research on change detection, resulting in low classification accuracy.

16
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Comparison of classes proportions between Proportion of pixels are not classified in the same
GlobCover 2005 and 2009 land cover products manner between the two GlobCover maps

The proportions of various types in classification results of 2005 and 2009 are relatively consistent.
However, finally detected changed pixels far exceeded the real changes (Bontemps et al., 2011).

The 2009 GlobCover product “cannot be used for any change detection application”—not even for “direct
comparison with the previous GlobCover 2005 product”(Bontemps et al., 2011)



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

Existing land-cover products are insufficient to support land-cover change analysis!
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Land-cover change
proportion at different scales:

e national scale: 1.86%;

* provincial scale: 2.77%;
1 km scale: 6.95%;

30 mscale: 10.6%

Mi, J., Liu, L., Zhang, X., Chen, X.,
Gao, Y., & Xie, S. (2022). Impact of
geometric misregistration in
GlobeLand30 on land-cover change
analysis, a case study in China.

Journal of Applied Remote Sensing,
16(1), 014516.



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

Time-series change detection and dynamic update products are expected to provide precise and
accurate understanding of global land cover changes.

Method

Fundamental

Advantage

Disadvantage

Datasets

Visual interpretation

Human-computer interaction
+ Visual interpretation

Use visual interpretation to
compare differences between
reference data and data to be
processed.

Make full use of expert prior
knowledge and image features
(such as spectral and texture).

Low efficiency; Larger
manpower and material
resources needed; high
subjectivity

1:100,000 China land use and
cover dataset

Period by period classification

Multi-period training samples +
Supervised classification

Select high-confidence training samples
period by period;

Classify each epoch independently
using a supervised classification model.

High monitoring efficiency; data time
consistency isn’t considered.

Period-by-period  training  sample
selection requires a large manpower and
material resources; the accumulation of
period-by-period classification errors
leads to greater uncertainty.

FROM-GLC
GLC_FCS30

GlobeLand30

ﬁ

Change detection and dynamic

update
Time-series change detection
+Machine learning

Use change detection model to detect
and extract changed pixels;

Train a classification model using stable
pixels to update the changed pixels.

Better temporal continuity; less human
intervention; high automation.

Dynamic monitoring has a low
efficiency, a huge amount of calculations,
a number of input data and a complex
quantitative processing.

GLC_FCS30D



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

Time-series land-cover change detection and classification algorithm
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Xie S et al. (2022). Mapping the annual dynamics of land cover in Beijing from 2001 to 2020 using Landsat dense time series stack, ISPRS
Journal of Photogrammetry and Remote Sensing, 185, 201-218.



5. GLC _FCS30D: Global 30-m land-cover dynamic monitoring product

» We take advantage of the continuous change-detection model and full time-series Landsat observations to capture 25 the
time-points of changed pixels and identify the temporally stable areas;

» We derive high-confidence training samples from temporally stable areas of Global 30m land-cover product in 2020;
* Locally adaptive classification models are used to update the land-cover information for changed pixels;
» Temporal-consistency optimization algorithm is adopted to improve temporal stability and suppress false changes.

Global 30m prior land- Full time-series Landsat Continuous change-
cover product in 2020 observations detection model (CCDC)

Mask region of
change detection

f U

10: Rain-fed cropland;
20: Irrigated cropland;

1985 50: Evergreen broadleaved forest 2020

|10 ]s0 10 [[10 10 |20 |20 [[20 |...]

J=i+Tw
ZJ wpcon(Lj = L)
1+2x(Ty)

Label = Original label retained, Prob; > 0.5
45¢= 1 Mode of neighborhood set, Prob; < 0.5

Prob; =

Global 30-m land-cover

dynamic product from U for chaneed pixels . :
1985 to 2022 optimization gedp classification model

Temporal-consistency Land-cover update results Locally adaptive



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

[ Global 30 m wetland dynamic mapping
In response to the current uncertainties in wetland monitoring, This study proposes a novel method for wetland
mapping by combining an automatic sample extraction method, existing multi-sourced products, satellite time-series
images and a stratified classification strategy, based on the complicated temporal dynamics and spectral heterogeneity of
wetlands. Wetlands are divided into 8 fine types. Overall accuracy 1s 86 95 +O 44%, and kamoa coefﬁ01ent is 0. 822
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Zhang, et al. (2023). GWL_FCS30: global 30 m Wetland map with fine classification system using multi-sourced and time-series
remote sensing imagery in 2020. Earth System Science Data, 15(1): 265-293

Zhang, X., Liu, L., Zhao, T., et al. (2024). Global annual wetland dataset at 30 m with a fine classification system from 2000 to 2022.
Scientific Data, 11(1), 310.



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

O Global 30 m impervious-surface dynamic dataset
A novel and automatic method of combining the advantages of spectral-generalization and automatic-sample-

extraction strategies was proposed, and then an accurate global 30 m impervious-surface dynamic dataset (GISD30) for
1985 to 2020 was produced using time-series Landsat imagery. Overall accuracy 1s 90.1 % and kappa coefficient is 0.863.

Zhang et al. (2022) GISD30:

global 30m  impervious-
surface dynamic dataset from
1985 to 2020 wusing time-
series Landsat imagery on the
Google Earth Engine platform,

-.00300.012-.0301 1.080 -.120WM.250 - .400 :
-.0071 7.030-.0507".120 - .180 WM .400 - .650 EBarth Syst. Sci. Data, 14’

-.01271.050 -.080 . 180 - .250 W 650 - 1.00 1831-1856




p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

Land-cover GIS30 GWL FCS30 GTF30 GLC _FCS30
products in 2015 2020 2020 2015
a single ESSD, 2020 ESSD 2023 JRS 2023 ESSD 2021
period | 1 1 7
Time-series GIS30D GWL FCS30D GTF30D GLC FCS30
land-cover 1985-2020 1985-2020 1985-2020 1985-2020
products ESSD 2022 SciD 2024 Zenodo Zenodo
Time-series change GLC _FCS30D 1985-2022
detection and dynamic > 1985-2022 Full time-series data
update products ESSD 2024 + dynamic update

Zhang et al., ESSD 2024, Liu et al., ISPRS Annuals 2024



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

Based on the continuous change detection algorithm, training samples from stable areas are used to
dynamically update changing areas. This approach has led to the development of a global 30 m land cover
dynamic monitoring dataset spanning from 1985 to 2022.
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p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

O The enlargements of GLC FCS30D

1985 2000 2010 2022

* The deforestation in South America is widely

recognized, and GLC FCS30D clearly reflects E_'
this trend. Namely, the early deforestation §
showed a grid distribution, and then each grid g
gradually extended outward and finally =
connected into patches.

* In the Yangtze River Delta, GLC FCS30D
depicts that the dominant land-cover change
over the enlargement is urbanization, and a
large quantity of irrigated cropland has been %
converted to impervious surfaces. And urban % :
expansion was significantly faster before 2010 g"

than after 2010 according to GLC FCS30D.




p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

A novel stratified random sampling global land-cover validation dataset
« We adopted the stratified equal-area sampling method to allocate 80,000 validation samples.
A visual interpretation module that integrates spatiotemporal spectrum information was developed using

Google Earth high-resolution images and time-series auxiliary data.

* The collection of validation dataset in 2020 has been completed, and that from 1985 to 2020 1s being produced.
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Zhao T et al. Assessmg the Accuracy and Con31stency of Six Flne Resolution Global Land Cover Products Using a Novel Stratified
Random Sampling Validation Dataset. Remote Sensing. 2023; 15(9):2285. https://doi.org/10.3390/rs15092285



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

Using multisourced remote sensing datasets, a novel interpretation tool is designed
on the GEE platform
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» 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

Accuracy comparison of global land-cover products based on statistical sampling (2020)

GlobeLand30 FROM-GLC30 GLC_FCS30 FROM-GLC10 ESA_WC ESRI_LC
P.A. UA. P.A. UA. P.A. UA. P.A. UA. P.A. UA. P.A. UA.

CRP 86.39(%1) 76.00(+1) 47.02(£2) 74.36(£1) 83.36(F 1) 73.55(+1) 55.03(£1) 77.88(£2) 61.99(+ 1) 87.61(£2) 65.13(+1) 86.28(£1)
FST 81.16(1) 82.97(+2) 81.47(£2) 82.80(£1) 87.97(F 1) 80.72(+2) 79.56(+2) 87.50(£1) 88.05(F1) 83.13(+1) 84.35(+1) 80.98(+2)
GRS  72.09(+2) 43.52(£2) 69.08(£1) 36.76(+2) 48.14(+2) 61.38(£2) 65.18(£2) 39.82(+2) 72.25(£2) 43.13(£2) 13.54(+2) 54.50(%3)
SHR  28.44(+2) 57.74(%2) 39.12(£4) 52.39(+2) 48.30(+2) 60.22(£2) 47.66(£5) 57.33(+2) 36.04(+4) 63.08(£2) 66.55(%2) 26.59(%2)
WET 63.08(+3) 52.32(£3) 2.20(£1) 43.60(%7) 49.33(£2) 41.37(£2) 4.30(+1) 47.85(%5) 33.90(F2) 50.38(+4) 27.01(+4) 45.36(%2)
WAT 8527(+2) 86.32(%1) 88.18(F 1) 77.48(£2) 81.37(+1) 92.68(F 1) 87.07(=1) 89.22(£1) 90.48(+1) 89.72( 1) 87.05(£1) 86.84(* 1)
IMP  69.39(£2) 58.20(£2) 48.31(£3) 69.17(2) 75.33(£2) 75.28(£2) 73.41(£2) 65.70(F3) 82.99(+2) 86.89(+ 1) 88.42(%2) 43.36(£2)
BAL 73.48(+4) 93.59(£2) 83.17(£3) 86.51(%3) 85.69(+3) 79.76(£5) 89.31(£2) 80.32(£3) 81.00(+3) 82.70(£5) 44.41(£4) 91.11(£3)
SNI  94.21(£5) 95.22(40) 88.81(£5) 96.45(£3) 93.15(£2) 93.14(£5) 93.50(+2) 83.81(£6) 92.57(£3) 95.65(£3) 95.13(£3) 78.27(+7)
OA.  69.96(+9) 66.30(+8) 72.55(1+9) 68.95(+8) 70.54(1+9) 58.90(+7)
Kappa 0.6302 0.5589 0.6589 0.6064 0.6343 0.5394

Zhao T et al. Assessing the Accuracy and Consistency of Six Fine-Resolution Global Land Cover Products Using a Novel Stratified
Random Sampling Validation Dataset. Remote Sensing. 2023; 15(9):2285. https://doi.org/10.3390/rs15092285



» 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

@ Time-series third-party validation dataset (EU LUCAS dataset) accuracy assessment
for GLC _FCS30D

The GLC FCS30D dataset has a mean overall accuracy of 81.91%(20.09%) ranging from 81.64% (0.09%)
to 82.11% (0.09%) in EU. Each accuracy indicator shows a good stability in the time dimension.

2006 2009 2012 2015 2018
PA.(SE) U.A(SE) PA.(SE) UA.SE) PA.(SE) UA.SE) PA.(SE) UA(SE) PA(SE) U.A(SE)
CRP  85.49(0.11) 93.37(0.08) 85.40(0.11) 93.31(0.08) 85.50(0.11) 93.17(0.08) 85.47(0.11) 93.05(0.08) 85.52(0.11) 92.82(0.08)
FST  95.22(0.08) 76.71(0.15) 94.97(0.08) 76.71(0.15) 94.79(0.09) 76.82(0.15) 94.36(0.09) 76.82(0.15) 93.71(0.09) 76.85(0.15)
GRS  6.13(0.26) 21.31(0.83) 6.10(0.26) 21.13(0.83) 6.05(0.26) 20.98(0.83) 6.08(0.26) 20.71(0.82)  5.99(0.26)  20.74(0.82)
SHR  8.13(0.42) 8.93(0.46) 8.25(0.43) 8.92(0.46) 8.02(0.42) 8.77(0.46) 7.84(0.42)  8.60(0.45) 8.35(0.43)  8.96(0.46)
WET  63.10(0.81) 66.55(0.81) 61.40(0.81) 65.55(0.82) 61.86(0.81) 66.21(0.82) 62.64(0.81) 66.60(0.81) 62.94(0.81) 65.34 (0.81)
WTR  89.73(0.40) 92.44(0.36) 90.09(0.40) 92.53(0.35) 90.28(0.39) 92.36(0.36) 90.83(0.38) 91.63(0.37) 90.10(0.40) 91.56(0.37)
IMP  58.55(0.56) 72.69(0.56) 59.21(0.55) 72.06(0.56) 59.06(0.55) 71.72(0.56) 58.65(0.55) 70.85(0.56) 59.01(0.55) 70.29(0.56)
BAL  52.77(1.12) 39.62(0.95) 52.90(1.12) 38.44(0.93) 52.19(1.13) 37.70(0.93) 52.07(1.13) 36.16(0.90) 52.33(1.13) 34.69(0.87)
PSI  86.02(5.00) 35.01(4.38) 91.40(4.04) 36.56(4.38) 89.25(4.46) 31.86(4.00) 96.24(2.74) 31.40(3.81) 96.24(2.74) 31.35(3.81)
0.A.(SE) 82.11(0.09) 81.99(0.09) 81.97(0.09) 81.82(0.09) 81.64(0.09)



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

@ Time-series third-party validation dataset (American LCMAP dataset) accuracy
assessment for GLC_FCS30D

The GLC FCS30D achieves a mean overall accuracy of 79.50% (£0.50%) and varies from a high value
of 80.04% (= 0.49%) in 2015 to a low value of 78.91% (= 0.51%) in 2000. Both the producer’s
accuracy and user’s accuracy in various types have significant stability in the time dimension.
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p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

€ Comparison with GLanCE products supported by NASA MEASURES project
s

The GLanCE product will be a 30-meter spatial resolution data:
record providing high quality representation of current and
past global land cover, land use and land cover change at
annual time steps from 2001 to 2019.

Classification System:
GLC_FCS30D: 35 land-cover types

VS 3 " and 1 Gray)
GLanCE: 7 land-cover types B voter
Time Range: | lee/Spow N\
GLC_FCS30D: 1985-2022 Bl o ciopes ' [ . e
- VS . Barren % : .
GLanCE: 2001-2019 e

Herbaceous



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

O Overall status of global land cover changes

During 1985-2020, the net change area of global land cover reached 533.27 Mha, accounting for 3.63% of
the total land area (excluding Antarctica). Among them, forest changes and impervious surfaces expansion
are the most significant, the net forest loss area was 240.01 Mha, 4.84% decrease compared with 1985.
Impervious surfaces area increased 104.43% compared with 1985, with the largest relative increase and an
increased area of approximately 55.88 Mha.
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p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

O Global forest cover changes

Mbha/yr

25.00

15.00
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-5.00
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-35.00

forest loss area (Mha)

19.89
11.67
6.84 7.85 850 I
533 il
0K 741 921 851
1217
-14.76 -15.90
20.87
28.40
1985-2000 2000-2005 2005-2010 2010-2015 2015-2020

m Forest loss m Forest gain m Forest net change

Figure Forest area change rate based on GLC_FCS30D

Time
GFC GLC_FCS30D
2001-2005 91.67 73.78
2006-2010 99.08 79.52
2010-2015 123.04 104.36
2016-2019 131.57(4 years) 142.00
> 445.36(19 years) 399.67

» Forest loss and forest gain show a significantly accelerating trend (0.37Mha/yr?, P<0.01; 0.18Mha/yr?,
P<0.01);
» Global forest area continues to decline, but the rate of decline has slowed since 2015;
» Global Forest Change is currently the only global 30 m forest change product (Hansen et al., Science, 2013).
the total forest damage of GLC FCS30D from 2000 to 2020 1s close to this dataset, but GLLC FCS30D can
better reflect the doubling of the global forest damage rate.



p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

O Global wetlands cover changes
The change area of each wetland subtype between 2000 and 2022 were calculated. The results showed that the
wetland area had a slight increasing trend (most of which occur in wetlands covered by seasonal water
bodies) due to the joint influence of global warming and human activities (construction of water
conservancy facilities). .

B Permanent water
B Swamp
H Marsh
Flooded flats
Saline

[*)
[=}

-
th

-
=]

3]

2000 . ' Mﬁl 2005 2006 2007 2008 000 2080 204 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
- [ ] [ |

o

The inland wetland area-variations after 2000
(X 104km?)

|
2]

;-
]

o |
h

B Mangrove

e
=

Salt marsh

m Tidal flats . . . I I .

[=]
w

(X10°km?)

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

2000 2001 2008 2009 2010 2011

The coastal wetland area-variations after 2000




p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

[0 Global impervious surface changes

The area of global impervious surfaces has significantly increased from 53.51 Mha in 1985 to 109.39 Mha
in 2020. The proportion of global land area (except for Antarctica) has increased from 0.36% to 0.74%,
showing a total growth area of 55.88 Mha and an augmentation of 104.43% compared to 1985 as well as
an average growth rate of 1.60 Mha/yr.
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p 5. GLC FCS30D: Global 30-m land-cover dynamic monitoring product

0 The comparisons with other LCC products

The comparisons with CCI-LC (ESA) and MCDI12Q1 (NASA) %
indicate that GLC FCS30D achieves the optimal performance: § 7 M it
1) The CCI-LC dataset underestimated the forest cover in 2001,  ° s
i.e., some forests were wrongly labeled croplands; and some §
deforested areas were not captured during the period 2001— § ’
2020; g

2) MCDI12QI also suffered from a forest omission error, and showed

Ps

various land-cover distributions in wetland areas, which indicated

that MCDI12Q1 has lower mapping accuracy and temporal

CCI_LC ma

stability for these wetland areas.

The GLC FCS30D adopted the continuous land-cover change Z? &
detection strategy, therefore, it achieves great spatiotemporal § |
(=]
oge . . ° Q
stability and captures rich spatial details. =
: o W Closed green n«llrl;vul forest Lichen: mosses I Saltmarsh - - ;\‘e;grnn Needleleal Forvs’t‘:,‘ 1 Grasslands
g Herbaceous cover I Open deciduous meedie-leaved forest Sparse vegetation Tl TidalfNlat ~ B Evergreen Broadleaf Forests ¥ Permanent Wetlands
T e iabdrond e e e o ™ | MDtorm vl s SlCrplans
t)I Cl = ‘C)‘l::; :’:;::::;:‘::d‘:::u : g:::h’::‘d fores o ::;,:‘:' f::::;::: ;: :::“ é = ‘( Il::td S‘I’::::hnds G :n;:‘:::/h‘ lrlllr;‘lu:'tg:l:ion Mosaics
< 1 Open deciduous broadleaved forest MM Evergreen shrubland 0 Flooded Nat W Water body = B Open Shrublands Barren
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p 6-1: The carbon emission from global land-cover changes

The spatiotemporal characteristics of accelerated carbon emissions caused by global land-cover changes

from the perspectives of carbon loss and carbon sequestration were revealed.

= ; WO ] TR ‘(,4)» 0°T T30°F ; Ii“l\f.‘\{\ \I'm\l)‘:\ - |:u\:\4\ o IIVU;-\;»J:,: "““ﬂ{ \T“f‘);\\
T ~© | v'Carbon loss from global forest loss were 34.22 =+
|- 2.02 PgC during 1985-2020, with the loss rate more
5 & ‘ ~3§ [ VRAL i = ; than doubling.

E . S@f 2 : :

.| YThe global carbon loss notably distributed on
i INDLAN OLEAN Taw .

rainforests and boreal forests.

Mllr;tensity ;f carb;)n.lloss frc‘an; forest I;ss (Mg; C)ha) RS \" i

(\) 5I ll() lI5 2m0 A = = = 7|%'n'\§" b e = :0 ¥ 3500;..\ == WOR 0°F ,(“_} T v([lv. T30°F, I"xl)\lu\}\ \IM\U:\ - 1;()\-\\ - m)‘\L K)n\\':jo\\

@ Carbon sequestration from forest gain (9.84 = 0.31 | | c
PgC) offset about 30% of the carbon loss above and | | . WS T
exhibited a similar spatial distribution. 2 i g

@ The tropics contributed nearly 3/4 of global carbon | | INPUAN OfEAN E
SequeStratlon ml)r:tensity (:)f carbon“seque'st;;ation fro;n forest Q‘ain (M.g Clha) et el A"' i

[l) 1_2 ‘I‘ ;‘ ‘0 EI80°W 7':"";‘(;“\ ~  120°W 90°W Hkm




p  6-2: Global cropland area dynamics and analysis

* Global cropland area has been expanded and lost by 3.703 million km? and 2.759 million km?, respectively, and the net gain in
cropland area was 0.944 million km? from 1985 to 2022, equivalent to 5.33% of the 1985 cropland area.
* Cropland area underwent a state of loss in the latitude range of 20°N~40°N, whereas the positive net change of cropland area was

primarily concentrated in the range of 30°S ~ 10°N (tropics).

» The proportions of cropland expansion were relatively high in Africa and South America, increasing by 26.33% (0.547 million

km?) and 32.11% (0.966 million km?) from 1985 to 2022
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p  6-2: Global cropland area dynamics and analysis

Global per capita cropland area decreased by 37.5%, from 0.347 ha in 1985 to 0.217 ha in 2022. On an
intercontinental scale, there was a declining trend in per capita cropland area across all continents from 1985 to 2022.
In particular, Oceania experienced the largest decline in per capita cropland area, with a decrease of 1.372 ha,
followed by North America with a decline 0.252 ha. Europe experienced the smallest decline in per capita

cropland area with a decline of 0.014 ha.
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6-3: The drivers of global forest changes

Using multisourced remote sensing products to clarify the specific drivers (anthropogenic and natural factors) of

global forest loss. The results showed:
* Anthropogenic drivers have dominated global forest loss over the past two decades, accounting for about 80%,
primarily due to agricultural encroachment (38.0%) and forestry activity (18.2%);

* Natural drivers such as persistent drought (8.6%) and wildfires (5.4%) also led to nonnegligible forest loss;

* All drivers have been accelerating forest loss, and the increasing trend has yet to be mitigated.

Decision tree model for identifying the drivers of global forest loss Spatial distribution of the forest loss drivers over 2000-2020
Forest loss areas Agricultural 5 120°W 60°W 0° 60°E Im E
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) 6-4: The land-cover dynamics in typical island countries

The land-cover dynamics in two typical island countries (Papua New Guinea and Suriname). Overall, the
land-covers in these areas exhibit good stability, and the forests are well protected; detailedly, the urban
expansion and coastal changes (mangrove forests and tidal flats) also can be clearly captured.

. e o — T T GLC FCS Classes
Papua New Guinea TN e A L Rainfed crplond
" L S 2 o> ity * B e . 3 ;| sy Herbaceous cover cropland
% ’ = % I 2 by » Tree or shrub cover (Orchard) cropland

Irrigated cropland
B Open evergreen broadleaved forest
I Closed evergreen broadleaved forest

Open deciduous broadleaved forest (0.15<fc<0.4)
M Closed deciduous broadleaved forest (fc=0.4)
B COpen evergreen needle-leaved forest (0.15< fc <0.4)
M Closed evergreen needle-leaved forest (fc =0.4)
B 0Open deciduous needle-leaved forest (0.15< fc <0.4)
B Closed deciduous needle-leaved forest (fc =0.4)

Open mixed leaf forest (broadleaved and needle-leaved)
B closed mixed leaf forest (broadleaved and needleleaved)
M shrubland

¥ [l Evergreen shrubland
POl't MoreSby Vo ik W 8 M Deciduous shrubland
i, S Grassland

Lichens and mosses
Sparse vegetation (fc<0.15)
Sparse shrubland (fc<0.15)
Sparse herbaceous (fc<0.15)
M swamp
Marsh
Flooded flat
M saline
Mangrove
Salt marsh
M Tidal flat
I Impervious surfaces
Bare areas
Consolidated bare areas
Unconsolidated bare areas
B water body
Permanent ice and snow
Filled value

Urban expansion

Coastal changes and urban expansion



p There is a long way to go, but the dawn is ahead

The world's first land-cover change dynamic update product, GLC FCS30D (1985-2022), has been shared
with over 2 million people. The dataset has been downloaded more than 40 million times, totaling a
download volume of 10 petabytes, and has had a widespread impact.

The only set of long-term GLC products included in GEE  The dataset ranks first at the Earth Big Data sharing
has been specially produced with animated videos to  platform and is the most popular data product, with
demonstrate classification performance. more than 1 million downloads.

Lal K WOVET HTUITT JET I =2
Zhang, X., Zhao, T., Xu, H., Liu, W., Wang, J., Chen, X., and Liu, L.: GLC_FCS3@D: The fir

ESRI 10m Annual Land Use Land a fine classification system from 1985 to 20822 using dense time-series Landsat imagery and

Cover (2017-2022) Discuss. [preprint], https://doi.org/10.5194/es5d-2023-328, in review, 2023.
ESA WorldCover 10 m 2020
V100 InputQuality D c
ataset Citation . _ N f o ;
GlobCover Global Land Cover GLC_.FCSISGD. the first global 30-m land-cover dynamic monitoring product with fine o
classification system from 1985 to 2022
Liangyun Liu, Xiao Zhang, & Tingting Zhao. (2023). GLC_FCS30D: the first global 3@-m land- ayun L' gt Tegigznao’ ] Riveskee s versio
system from 1985 to 2022 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.8239385 views® 1433 14281
5 . dynamic product ter resolution that adopt; It utikzes a refined system ——
j0ads
Daylight Map Distribution map S—— P i hargeSelcion mth, o adapive iyl st st gzt st o
data to achieve an overall accuracy of 80 88% (40 27%) for the bask: classification system 10 major land-caver types) and Data volume &
m (17 LCCS land-cover types)

Finer Resolution Observation The GLC_FCS300 has been compressed Into 36 2ip s, and the details about the GLC_FCS30D can be found in the User's guides. =
and Monitoring of Global Land ]
Cover 10m (FROM-GLC10) Files Versiol

GLC_FCS30D UserGuides pdf

GLANCE Global Landcover
Training dataset

Global Impervious Surface Area
(1972-2019)

Global 30m Impervious-
Surface Dynamic Dataset

(GISD30) The User Guides of GLC_FCS30D (global 30 m land-cover dynamic External resources
Ly ol Y i Ch ol F P 4 HApTs ; e ¥ L . ) . Indexed in
Global urban extents from 1870 | monitoring product with fine classification system) from 1985 to 2022
to 2100 = | 7 7 Q) openare
Earth Engme Snippet Liangyun Liu and Xiao Zhang
Global urban projections under | liuly@radi.ac.cn
SSPs (2020-2100 | . . . .
) ar annual = ee.ImageCollection("projects/sat-io/open-datasets/GLC-FCS30D/annual”); Aerospace Information Research Institute, Chinese Academy of Sciences Details

Global Intra-Urban Land Use var five_year = ee.ImageCollection{“projects/sat-io/open-datasets/GLC-FCS38D/five-years-ma
World Settlement Footprint & | W Background

Domestic and Foreign Platforms: The United Nations Species Diversity Database, UN-Habitat's EO Toolkit
database, Earth Big Data Scientific Data Sharing Platform, OpenLandMap and Google Earth Engine Community.
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Aerospace Information Research Institute, Chinese Academy of Sciences

Address: No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China
Tel: 86-10-82178163 Fax: 86-10-82178009

Email: liuly@radi.ac.cn Website: www.aircas.cn

https://data.casearth.cn/thematic/glc _fcs30 https://zenodo.org/records/8239305
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