
Prof. Liangyun Liu

liuly@radi.ac.cn

Aerospace Information Research Institude, Chinese Academy of Sciences

Mapping global land-cover dynamics

using time-series Landsat stacks

mailto:liuly@radi.ac.cn


Contents

1. Introduction

2. Quantitative pre-processing for time-series Landsat imagery

3. Forest disturbance monitoring and biomass mapping 

4. GLC_FCS30: GLC with fine classification system at 30 m

5. GLC_FCS30D: global land-cover change monitoring during 1985-2022

6. Global land-cover change analysis and applications using GLC_FCS30D



1. Introduction

Land-cover data are important and necessary for supporting sustainable development goals, maintaining biodiversity,

and monitoring natural resources.

Fine-resolution land-cover monitoring at the regional or global scale is regarded as an important scientific goal, while

it is usually time-consuming and involves a lot of manual participation.



1. Introduction

Over past decades, the quickly development of remote sensing techniques as well as storage and computation capabilities, the global

land-cover mapping makes great progresses, a series of global land-cover products have been continuously released ranging from

1km~10m. The overall development trend is from low resolution to high resolution and from single-epoch land-cover mapping to

time-series land-cover change monitoring.

Data source Resolution Update frequency Classification system Time period

IGBP-Discover NOAA AVHRR 1km One-epoch IGBP (17 classes) 1992.04-1993.03

UMD NOAA AVHRR 1km One-epoch IGBP (14 classes) 1992.04-1993.03

GLC2000 SPOT VGT 1km One-epoch LCCS (22 classes) 1999.11-2000.12

GLCNMO MODIS Terra and Aqua 500m Two-epochs LCCS (20 classes) 2008、2013

MCD12Q1 MODIS Terra and Aqua 500m Annual IGBP (17 classes) 2001.01-present

GlobCover MERIS SPOT VGT 300m Two-epochs LCCS (22 classes) 2005 and 2009

ESA CCI_LC MERIS SPOT VGT 300m Annual LCCS (22classes) 1992.01-2015.12 (annual)

FROM_GLC30 Landsat TM/ ETM+ 30m Three-epochs 10 classes/26 classes 2013、2015、2017

GlobeLand30 Landsat TM/ ETM+, HJ-1 30m Two-epochs 10 classes 2000、2010、2020

GLC_FCS30 Landsat TM/ETM+/OLI 30m Six-epochs 29 classes 1985-2020 (5year interval)

FROM_GLC10 Sentinel-2 10m One-epoch 10 classes 2017  



1. Introduction

There is huge uncertainty in the understanding of global land cover changes. 

Winkler, K., et al. (2021). Global land use changes are four times greater than previously

estimated. Nature Communications, 12, 2501

There are great differences between different monitoring datasets. Winkler et al. quantitatively calculated

the global annual total land use change area ranging from 0.249×106 km2 (ESA CCI product) to 1.123×106

km2 (NASA MCD12Q1 product).



1. Introduction

There is great uncertainty in the total amount and change of global forest cover.

Chen et al. (2020 RS) quantitatively analyzed the total global forest change area of six products from 2001 to 

2012, ranging from a decrease of 1.6×106 km2 (UMD GLAD Forest product) to an increase of 1.7×106 km2 

(Vegetation Continuous Fields product).

Chen, H., Zeng, Z., Wu, J., et al. (2020). 

Large uncertainty on forest area change in the 

early 21st century among widely used global 

land cover datasets. Remote Sensing, 12(21), 

3502.



1. Introduction

• The Landsat series: long-term data record(50years), higher spatial resolution (30-60m), free approach(USGS,

CEODE). NASA funded some Landsat reflectance production project: LEDAPS and WELD.

• Cloud computing platform, represented by Google Earth Engine, liberates issues such as data collection and pre-

processing, and also provides a computing and storage platform.

Challenge: can we reconstruct the history of global land cover from long time-series Landsat stacks?
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Surface reflectance is a necessary product for quantitative remote sensing, especially in the long-term or 

large-area land cover monitoring with multiple remote sensors

2. Quantitative pre-processing for Landsat imagery

Background

Surface reflectance is the basis of surface parameters 

inversion:

VIS、BRDF/Albedo、
FAPR、GPP/NPP……

Surface reflectance is the basis for developing  remote 

sensing model:

Forest change monitoring,

Water quality monitoring,

Crop growth monitoring…….



2. Quantitative pre-processing for Landsat imagery

The Landsat series: long-term data record(40years), higher spatial resolution (30-60m), free approach(USGS,

CEODE)

NASA funded some Landsat reflectance production project: LEDAPS and WELD

Background



2. Quantitative pre-processing for Landsat imagery

Flowchart of quantitative pre-processing — Flowchart

• Due to the scattering and absorption of atmosphere, the reflectance sensed by the sensors (TOA SR) cannot be equated

with the surface reflectance (BOA SR);

• As variances of slope and aspect cause the variation in observed reflectance for similar targets, the SR imagery in

terrain areas need to be topographically corrected.



2. Quantitative pre-processing for Landsat imagery

Topographical correction — Theoretical basis

Topographic correction is an important step in the pre-processing of fine-resolution remote sensing images. It

includes compensation for differences in solar irradiance and minimizes the variation in observed reflectance

for similar targets with different slope and aspect.

𝜌𝐻(𝜆) = 𝜌𝑇(𝜆) ×
cos )θ𝑠 + 𝑐(𝜆

)cos 𝑖 + 𝑐(𝜆

𝜌𝐻 is the corrected reflectance observed for a horizontal surface, 𝜌𝑇 is the reflectance observed over sloping

terrain, θ𝑠 is the solar zenith angle, 𝑖 is the relative solar incidence angle and 𝑐 is the correction coefficient:

cos 𝑖 = cos θ𝑇 × cos θ𝑠 + sin θ𝑇 × sin θ𝑠 × cos φ𝑇 − φ𝑠

where θ𝑇 is the slope angle, φ𝑇 is the aspect angle and φ𝑠 is the azimuth angle. θ𝑇 and θ𝑠 are derivations of the Digital 

Elevation Model (DEM). The correction coefficient, c, is a wavelength-dependent variable and is derived from a semi-

empirical function:

ρ(𝜆) = 𝑎 × cos 𝑖 + 𝑏

where c = b/a, 𝑎 is the slope and 𝑏 is the intercept of the linear relationship between the SR and the relative solar 

incidence angle



2. Quantitative pre-processing for Landsat imagery

Topographical correction — Results

The comparison indicated that the topographical correction could efficiently remove the radiometric 

difference caused by the terrain slope. 
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2. Quantitative pre-processing for Landsat imagery

Atmospheric correction — Theoretic basis

Radiative transfer process between

surface reflectance 𝜌𝑇𝑂𝐶 and as-

sensor reflectance 𝜌𝑇𝑂𝐴

Atmospheric effects: 

Scattering and absorption

𝜌𝑇𝑂𝐴=𝜌𝑝𝑎𝑡ℎ +
𝑇 𝜃𝑠 𝑇 𝜃𝑣 ×𝜌𝑇𝑂𝐶

1−𝑆×𝜌𝑇𝑂𝐶

These unknown parameters are

decided by the atmospheric

components (aerosol, water vapor

and ozone).



2. Quantitative pre-processing for Landsat imagery

Atmospheric correction using MODIS products and 6S model 

Synchronization:
Landsat TM/ETM+/OLI and MODIS Terra sensors share the same polar orbit, with Landsat observations occurring

approximately 0.5h before MODIS observations;

Atmospheric products:
MODIS could provide high resolution( 0.05 degree) and accurate atmospheric products including AOT、WV and

OZONE.



2. Quantitative pre-processing for Landsat imagery

Atmospheric correction using MODIS products and 6S model 

Step1: interpolation of MODIS products;

Step2: building look-up table between

atmospheric products between correction

coefficients using 6S model;

Step3: per-pixel atmospheric correction using

look-up tables and the aerosol optical depth

product.

Hu, Y., Liu, L., Liu, L., Peng, D., Jiao, Q., & Zhang, H. (2014). A Landsat-5 atmospheric correction based on 

MODIS atmosphere products and 6S model. IEEE Journal of Selected Topics in Applied Earth Observations 

and Remote Sensing, 7(5), 1609-1615.



2. Quantitative pre-processing for Landsat imagery

Kriging interpolation for MODIS atmospheric products

Aerosol optical depth Water vapor Total ozone
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MODIS atmospheric products suffer the problem of missing data especially for aerosol optical depth product,

so we firstly needed to interpolate these missing data using the kriging method.



2. Quantitative pre-processing for Landsat imagery

Visual comparison of the effects of atmospheric correction

BOA反射率 TOA反射率

BOA

TOA

Yulin：2011\06\20



2. Quantitative pre-processing for Landsat imagery

Atmospheric correction — Results

TOA BOA

Figure (a). TOA reflectance displayed with true-color composite of China in 2013. 

(b). Surface reflectance displayed with true-color using the same contrast stretch as (a)

Wang Y, Liu L, Hu Y, et al. Development and validation of the Landsat-8 surface reflectance products using a

MODIS-based per-pixel atmospheric correction method[J]. IJRS, 2016, 37(6): 1291-1314.



2. Quantitative pre-processing for Landsat imagery

Cross-validation using MODIS daily products (MOD09A1)

The RADI SR (produced by the proposed method) is greatly consistent with MODIS daily SR product

(MOD09A1) with a mean R2 of 0.93 and an RMSE of 0.023.



2. Quantitative pre-processing for Landsat imagery

Cross-validation using Landsat SR provided by USGS

The RADI SR (produced by the proposed method) is greatly consistent with USGS SR product with a mean

R2 of 0.97 and an RMSE of 0.01.



2. Quantitative pre-processing for Landsat imagery

Relative correction — Radiometric normalization 

Question

• Landsat long time-series imagery (1972-now);

• The MODIS-based atmospheric correction method is only suitable for Landsat imagery after 2000 because of the lack

of MODIS atmosphere products before 2000;

• How to guarantee the radiometric accuracy for long time series Landsat imagery?

Atmospheric correction

（After 2000）
Radiometric normalization 

（Before 2000）
Long time-series surface 

reflectance=+

Solve method



2. Quantitative pre-processing for Landsat imagery

Radiometric normalization — Flowchart

The key of radiometric normalization method

is to use the corrected SR imagery after 2000

as reference to normalize the Landsat image

before 2000 according to the imaging date.

Liu, L., et al. (2013). Mapping afforestation and deforestation from 1974 to 2012 using Landsat time-series 

stacks in Yulin District, a key region of the Three-North Shelter region, China. Environmental monitoring and 

assessment, 185(12), 9949-9965.



2. Quantitative pre-processing for Landsat imagery

1.  A multivariate alteration detection transformation was used to select the “no-change” pixels between 

reference image and target image,

2.  using the “no-change” pixels, the relative radiometric normalization coefficients was determined based on 

orthogonal linear regression ,

3.  the coefficients were applied to normalize the target image

Radiometric normalization — Method

scatter plots of “no-change” pixels, X-axis is target image, Y-axis is reference image 



2. Quantitative pre-processing for Landsat imagery

Radiometric normalization — Results

Mosaic of reference and subject

images. The left is a mosaic of

original TOA reflectance images, and

the right is a mosaic of reference

reflectance image and normalized

images which displayed with same

stretch parameters as left. RGB

composite: R (band 3), G (band 2), B

(band 1).

HU, Y., LIU, L., CACCETTA, P., & JIAO, Q. (2015). Landsat time-series land cover mapping with spectral 

signature extension method. Journal of Remote sensing, 19 (4), 639-656.



2. Quantitative pre-processing for Landsat imagery

Landsat datacube (Global 3-level land grid)

1) The across-track scene overlap distance increase as the latitude increases;

2) The global grid was defined in an equal area projection to ensure that the surface area sensed by each

Landsat acquisition was sampled with the same spatial grid density.

Therefore, in order to improve the Landsat use efficiency, we should abandon traditional storage pattern with

the scene as the management unit.

The sinusoidal equal area projection was used as it provides a global uninterrupted projection. The grid spacing

was set sufficiently small to capture the variable geographic location and extent of Landsat acquisitions and scene

overlap imposed by the Landsat sensor and orbit geometry (Kovalskyy and Roy, 2013).

Kovalskyy, V. and D. P. Roy (2013). "The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface

observations and implications for global 30m Landsat data product generation." Remote Sensing of

Environment 130: 280-293.



2. Quantitative pre-processing for Landsat imagery

Landsat datacube (Global 3-level land grid)

The grid is defined in the sinusoidal equal area projection and is composed of 6,138,864 land grid grids

spaced every 5.559752 km in the X and Y axes of the sinusoidal coordinate system

Minimum land grid naming rule: LTS_Ref_hh26vv05h3v4_p17r23_2015243.dat



2. Quantitative pre-processing for Landsat imagery

Landsat datacube (Global 3-level land grid)

5295×5295 

30m pixels

Level-1 land grid:  the grids are 10 degrees by 10 degrees at the equator (MODIS)

Level-2 land grid: there are

7×7 Level-2 grids within

each Level-1 land grid

(GWELD)

Level-3 land grid: the grid is defined in the sinusoidal equal area projection and

spaced every 5.559752 km in the X and Y axes of the sinusoidal coordinate system



2. Quantitative pre-processing for Landsat imagery

Landsat datacube (Global 3-level land grid)

A total of 6500 Landsat imagery over China has been tiled into Landsat datacube, and the temporal frequency

of Landsat imagery in each geographical location was calculated. The results indicated that the tiling process

could improve the Landsat use efficiency, especially over the overlapping areas.

Zhang, X., Liu, L., Chen, X., Xie, S., & Gao, Y. (2019). Fine Land-Cover Mapping in China Using Landsat 

Datacube and an Operational SPECLib-Based Approach. Remote Sensing, 11(9), 1056.



2. Quantitative pre-processing for Landsat imagery

Landsat datacube — Restoration of unclear pixels (cloud, shadow pixels)

Cloud and shadow contamination is inevitable especially for low latitude areas. For multi-temporal

classification, the cloud and shadow should be restored beforehand using spatio-temporal methods.

Zhu, X., et al. (2012). "A Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick

Clouds in Landsat Images." IEEE Geoscience and Remote Sensing Letters 9(3): 521-525.

Chen, J., et al. (2011). "A simple and effective method for filling gaps in Landsat ETM+ SLC-off images."

Remote Sensing of Environment 115(4): 1053-1064.



2. Quantitative pre-processing for Landsat imagery

Landsat datacube — Restoration results

Original time series Landsat SR

Time series Landsat SR after filling
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3. Forest disturbance monitoring and biomass mapping 

Background

Within the framework of the North American Carbon Program (NACP), the North American Forest

Dynamics (NAFD) project has evaluated forest disturbance and regrowth history for the conterminous U.S.

by combining Landsat observations and field measurements (Goward et al. 2008).

The NAFD project uses the Vegetation Change Tracker (VCT), an automated forest change analysis

algorithm, on temporally dense (annual or biennial) Landsat Time Series Stack (LTSS) of images and

produces forest disturbance data products (Huang et al. 2010). The algorithm consists of two major steps: 1)

individual image analysis and 2) time series analysis.

VCT produces a disturbance product where each pixel is labeled as either a static land class (persistent non-

forest, persistent forest, or persistent water) or with the year of change for disturbed forest pixels.

This data set provides the results of time-series analyses of Landsat

imagery for 55 selected forested sites across the conterminous

U.S.A. The output is a pair of disturbance data products for each

site, one showing the first year of disturbance in the time series, the

other showing the last year of disturbance. The time period

analyzed is approximately 1984-2009.



3. Forest disturbance monitoring and biomass mapping 

http://daac.ornl.gov/NACP/guides/NAFD_Disturbance_guide.html

The first year of forest disturbance map for an area in Mississippi ( p21r37 ) where industrial forestry is

prevalent. The legend details the map classification system. The first three map categories are static classes

which are consistent throughout the time series: persistent non-forest, persistent forest, and water. Forest

change pixels are classified according to the year in which change occurred. Actual disturbance year classes

vary according to the image dates present in each individual LTSS.

Background

http://daac.ornl.gov/NACP/guides/NAFD_Disturbance_guide.html


3. Forest disturbance monitoring and biomass mapping 

Study Area and experiments
Three North forest program began in 1978 and will be finished in 2050.The project will take place in three stages (1978–

2000, 2001–2020, and 2021–2050) following eight engineering schedules.

The key goal of this program in the following decades was to improve forest coverage in arid and semiarid China from

5% to 15% by using this program as the primary method to combat desertification and to control dust storms. Wang et al

(2010)

Three-North Shelter Forest Program

                                 Green Great Wall Program



3. Forest disturbance monitoring and biomass mapping 

Study Area and experiments

GPS Longitude Latitude Age

52 38°47'23.79"N 110°15'6.32"E 5-10
55 38°03'30.11" N 110°28'4.52" E 10
56 38°04'5.12" N 110°27'43.93" E 10
57 38°05'23.13" N 110°27'9.58" E 10
60 38°07'32.83" N 110°23'50.79" E 40
63 38°18'1.86" N 110°11'51.32" E 43
64 38°18'0.97" N 110°11'55.92" E 45
65 38°17'48.37" N 110°12'7.67" E 8
86l 38°17'50.40" N 110°12'9.99" E 30
66 38°18'32.21" N 110°11'52.79" E 30
67 38°15'26.22" N 110°15'8.57" E 13
72 38°15'36.94" N 110°14'46.20" E 28
69 38°15'49.87" N 110°15'16.59" E 26
70 38°15'48.32" N 110°15'22.23" E 30
71 38°15'54.28" N 110°15'44.55" E 30
36 38°17'25.99" N 110°00'35.01" E 5-10
98 38°12'39.24" N 109°45'38.38" E 40
74 38°04'14.37" N 109°49'56.10" E 10
75 38°04'27.08" N 109°49'58.32" E 12
76 38°01'48.77" N 109°50'18.88" E 40
77 38°01'54.07" N 109°50'29.76" E 40
78 37°59'26.16" N 109°50'28.65" E 40
S1 38°05'5.84" N 109°31'44.38" E 30
79 38° 06'14.97" N 109°29'59.97" E 40
S 38° 06'29.57" N 109°26'29.01" E 40

80 38°16'36.94" N 110°07'37.95" E 6-12

27 sites investigated for validation of 

forest changes forest types,  Age 

Density,  Height in 2012 and 2013



3. Forest disturbance monitoring and biomass mapping 

Study Area and experiments

Before After



3. Forest disturbance monitoring and biomass mapping 

➢Study Area and experiments

A

B

C

D

EF

A
B

C

D

EF

Aug. 2, 1986 June 30, 2009 



3. Forest disturbance monitoring and biomass mapping 

Study Area and experiments

2010-7-17 2001-5-31 1986-8-2



3. Forest disturbance monitoring and biomass mapping 

The flowchart of disturbance monitoring and biomass mapping 

Step 1: Time-series images radiometric 

correction;

Step 2: Afforestation and deforestation 

mapping;

Step 3: Forest biomass mapping using 

empirical model.



3. Forest disturbance monitoring and biomass mapping 

Time-series images radiometric correction 

Path/Row Acquisition date

L5-8

127/33&34

2013-08-22, 2012-06-30, 2011-07-22, 2010-07-17, 2009-06-30, 

2008-09-15, 2007-08-12, 2007-05-24, 2006-09-10, 2005-07-29, 

2004-09-12, 2003-08-17, 2002-08-06, 2001-05-31, 2000-05-20, 

1998-07-02, 1996-06-10, 1995-06-08, 1994-08-24, 1993-06-18, 

1992-07-17, 1990-08-29, 1989-09-11, 1988-09-24, 1987-05-17, 

1986-08-02

MSS

137/33&34
1978-08-01, 1977-08-15, 1976-09-25, 1975-04-22, 1974-05-24

MSS

136/33&34
1978-09-23, 1977-07-07, 1976-06-26, 1975-06-14, 1973-11-24

Acquisition dates (yyyy-mm-dd) of collected Landsat images

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

4/1 5/16 6/30 8/14 9/28

Y
ea

r

Date



3. Forest disturbance monitoring and biomass mapping 

Time-series images radiometric correction 

•Terrain illumination correction. All the Landsat images were corrected using a C-correction method

(Teillet et al. 1982) and ASTER DEM (30m) data, using a software developed by CSIRO (Wu et al. 2004).

•Image atmospheric correction for the base image. The base image (acquired on June 3, 2009) was

corrected using an atmospheric correction algorithm adapted from the MODIS 6S radiative transfer approach.

•Production of ground surface reflectance (GSR) images based on a relative normalization method.

•We developed a procedure to derive GSR products based on the relative radiance normalization algorithm

(Cohen et al. 2003). An iterative re-weighted Multivariate Alteration Detection (MAD) algorithm by Cohen

et al. (2003) was used to detect the invariant target pixels. The Landsat DN images from Step 2 were then

matched to the GSR base image from Step 3 by least-square fitting for these invariant pixels, and the time-

series Landsat GSR images were produced
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3. Forest disturbance monitoring and biomass mapping 

Multi-phenological forest z-score for forest mapping

An integrated forest z-score was designed to discriminate forest and non-forest pixels in multi-spectral

images (Huang et al. 2009). With training forest pixels determined according to ground surveys or visual

interpretation, the mean ത𝑏𝑖 and standard deviation (SDi) of band i for the raining forest samples can be

calculated from the GSR image. The forest z-score (FZi) value for that band is defined:
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−
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3. Forest disturbance monitoring and biomass mapping 

Vegetation Change Tracker (VCT) method based on IFZ

Original and smoothed IFZ data, B7 reflectance

IFZ>2.5 except for 3 epochs
Non 

vegetation

Yes

Cloud and 

invalid pixel 
flag

Dense time-series IFZ and 

B7 reflectance data

Savitzky-

Golay filter

IFZ<2.0 except for 3 epochs 

No

Persisting 

forest

Cropland rules

No

Deforestation

Yes

C2

B7 refl. <0.1 

for >5 epochs
Water

Bare land

No

Yes

Cropland

Forest changes rules

No

C1
Afforestation

Flowchart to map land covers and forest changes using the dense time series of IFZ and reflectance data.
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Forest disturbance results

0
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3. Forest disturbance monitoring and biomass mapping 

Forest disturbance results
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Epoch-wise afforestation and deforestation increments between 1974 and 2012

These two afforestation peaks agree with the start of TNSFP in 1978, and another strong political promotion

of afforestation after 2000, through an initiative proposed by Premier Zhu Rongji in 1999 called "Returning

cultivated land to forest and mountain greening". There was also a small peak of deforestation in 2009,

clearly visible in the plots, which was caused by basic infrastructure construction projects (such as road

construction, city and airport development, mining industry, etc.) promoted by the government after the

global economic crisis in 2008.



3. Forest disturbance monitoring and biomass mapping 

Collection of validation data 

(a)                (b)

Photos of different afforestation sites in the Yulin district: (a) afforestation of Scots pine in 1980; (b)

afforestation of Chinese pine in 1980; (c) afforestation of Sabina vulgaris in 2003; (d) afforestation of

Chinese pine in 2004

27 sites investigated for 

validation of forest changes 

forest types,  Age Density,  

Height in 2012 and 2013

(c)                (d)



3. Forest disturbance monitoring and biomass mapping 

Accuracy validation

Bare land Cropland Water Afforestation
Persisting 

forest
Deforestation Total

Bare land 1302 76 1378

Cropland 500 64 19 31 614

Water 306 306

Afforestation 35 55 877 31 998

Persisting forest 35 101 585 6 727

Deforestation 116 116

Total 1337 590 306 1118 635 153 4139

Overall accuracy 89.1%, Kappa coefficient= 0.858.

Confusion matrix for the six class land cover and forest change mapping.



3. Forest disturbance monitoring and biomass mapping 

Accuracy validation
Table 5. Validation results for the land cover and forest change mapping (pixel counts). 1 

Class 
Bare 

land 

Crop 

land 
Water 

2004 

S1 

2003 

S2 

2003 

S3 

2002 

S1 

1985 

S1 

1982 

S1 

1980 

S2 

1981 

S1 

1980 

S4 

1980 

S1 

1975 

S2 

1965 

S1 

Persisting 

Forest 

D2009 

S1 
Total 

Bare land 1302 
  

15 5 2 54 
          

1378 

Cropland 
 

500 
   

48 10 
   

1 
 

5 
 

4 15 31 614 

Water 
  

306 
              

306 

2010 9 
                

9 

2009 16 
                

16 

2008 4 
     

2 
          

6 

2007 1 
     

4 
          

5 

2006 2 1 
 

1 
  

9 
          

13 

2005 
   

16 
  

25 
          

41 

2004 3 8 
 

5   4 115 
          

135 

2003 
 

3 
 

1 4 41 64 
          

113 

2002 
 

1 
  

1 46 26 1 
         

75 

2001 
     

71 20 3 1 1 
       

96 

2000 
 

3 
   

3 1 1 
       

1 
 

9 

1998 
     

2 1 
          

3 

1996 
     

1 1 
 

1 
    

1 
 

4 
 

8 

1995 
      

1 1 
       

1 
 

3 

1994 
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The forest afforestation age information retrieved by the Landsat time series images was significantly related

to measured plot tree age, with a determination coefficient (R2) of 0.824, and a RMSE of 4.32 years.

3. Forest disturbance monitoring and biomass mapping 

Accuracy validation

0 <=1 <=2 <=3 <=5

Percent
22.2% 57.8% 73.6% 86.5% 97.4%

Temporal detection accuracy of forest changes (epoch difference).
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3. Forest disturbance monitoring and biomass mapping 

Forest biomass modeling using field data

In 2012, We measured: Diameter (at 10, 30, 50, and 130 cm height),Tree height, Tree age, Fresh weight

and water content (for stems, branches, leaves, coarse and fine roots) for Poplar tree, Chinese Scholar,

Chinese pine.



3. Forest disturbance monitoring and biomass mapping 

Forest biomass modeling using field data

Relationship between above ground biomass (AGB) and diameter, four species together 

(PopulussimoniiCarr, poplar tree, Chinese pine, and Pinus sylvestris)，and the power function curves was 

observed



3. Forest disturbance monitoring and biomass mapping 

Forest biomass modeling based on empirical model

A summary of regression analysis results in the western Brazilian Amazon

1) spectral signature led to much better estimation performance than textural images for secondary forest, but

the result was inverse for mature forest;

2) Neither spectral signatures nor textural images could effectively estimate mature forest biomass;

3) A combination of spectral signature and textural images slightly improved secondary forest biomass

estimation performance, but the improvement was considerable for mature forest biomass estimation.

Dengsheng Lu et al., “Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty

Analysis of the Estimates,” International Journal of Forestry Research, 2012. doi:10.1155/2012/436537



3. Forest disturbance monitoring and biomass mapping 

The proposed model for biomass mapping

Biomass=f1(species, soil, water available, climate variables, age)

NDVI=f2(coverage)

Tree Biomass≈f3(Tree age)

Plot Biomass ≈ linear(NDVI×exp(age))

y = 10.218x - 9.3247
R² = 0.7103
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3. Forest disturbance monitoring and biomass mapping 

The comparison between proposed model and VI-based model

 1 

 2 

Figure 5. Regional AGB estimation models based on vegetation indices and measured tree age 3 
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3. Forest disturbance monitoring and biomass mapping 
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biomass 

results



3. Forest disturbance monitoring and biomass mapping 

Accuracy validation

Statistics of forest AGB and forest area in six counties of Yulin District at different years.

Year
Biomass1

(t/ha)

Biomass2

(t/ha)

Biomass3

(G kg)

Area

(km²)

1986 14.35 15.72 5.8 4,048 

1990 17.92 19.30 8.0 4,453 

1994 22.95 24.84 10.6 4,617 

2002 18.42 26.47 12.3 6,652 

2003 17.84 25.30 14.1 7,897 

2007 18.25 37.53 17.7 9,704 

2011 20.22 39.46 21.9 10,831 

2013 24.60 44.53 26.6 10,831 

Biomass1 and Biomass2 are the mean AGB density for total forest area and persisting forest area, respectively; 

Biomass3 is the total forest AGB ; Area stands for total forest area in six counties Yulin District.



3. Forest disturbance monitoring and biomass mapping 

Accuracy validation

 1 

(a)                                             (b) 2 

Figure 8. (a) Mean AGB density of forest at different ages in Yulin District in the last 40 years. (b) 3 

Increasing trend in mean AGB density for persistent forest in Yulin District from 1985 to 2013. 4 
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For the forest area, including persisting forest and subsequently planted forest, has experienced an annual

AGB growth rate of about 1 t/ha over the last four decades.



3. Forest disturbance monitoring and biomass mapping 

Summary

• The afforestation age can be retrieved from the Landsat time-series stacks in last forty years (from 1974

to 2013), which was consistent with the surveyed tree ages, with a RMSE value of 4.32 years and a

determination coefficient (R²) of 0.824.

• The AGB models were successfully developed by integrating vegetation indices and tree age, which was

significantly improved using the combination of SR and tree age, with a R² value from 0.50 to 0.727.

• We confirmed a great achievement of the ecological revegetation projects in Yulin district over the last 40

years. It clearly showed a big forest increase in Yulin district from 340,890 ha (13.2% of total district area)

in 1974 to 1124,648 ha (43.8%) in 2012.The total forest AGB in Yulin district has increased by 20.8 G kg,

from 5.8 G kg in 1986 to 26.6 G kg in 2013, with a total increase of 360%.

• The results also present a noticeable carbon increment for the planted artificial forest in Yulin district over

the last four decades, with a AGB increase of 1t/ha/year.
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The overview of land-cover mapping methodology

Manual Semi-automatic Automatic

Method visual interpretation supervised classification 
Prior knowledge, Spectral 

library

Features
Texture, color, brightness 

etc

Spectral signatures from 

training samples

Spectral signatures from 

prior library

advantages

Accurately determine 

each parcel using expert 

knowledge

Determine each pixel using 

training samples

Maybe accurate

Determine each pixel using 

reference spectra

examples

National Land Use/Cover 

Database of China (Zhang et 

al. 2014)

FROM-GLC (Gong et al., 2013) GLC_FCS30

(Zhang et al., 2021)
GloberLand30 (Chen et al., 2015)

Generally, there are three classification strategies to land-cover mapping.

We proposed a novel and automatic approach, called the SPatial-tEmporal speCtral Library (SPECLib), which

aims to produce a land cover map with a 30-m spatial resolution at global or regional scale.



The fine classification system in GLC_FCS30 (containing 35 land-cover subcategories)

Globland30 LCCS Classification System Fine Classification System

Cropland
Rain-fed cropland

Rain-fed cropland

Herbaceous cover

Tree or shrub cover (orchard)

Irrigated cropland Irrigated cropland

Forest

Evergreen broadleaved forest Evergreen broadleaved forest

Deciduous broadleaved forest

Deciduous broadleaved forest

Closed deciduous broadleaved forest

Open deciduous broadleaved forest

Evergreen needleaved forest

Evergreen needleleaved forest

Closed evergreen needleleaved forest

Open evergreen needleleaved forest

Deciduous needleaved forest

Deciduous needleleaved forest

Closed deciduous needleleaved forest

Open deciduous needleleaved forest

Mixed forest Mixed-leaf forest

Shrubland Shrubland

Shrubland

Evergreen shrubland

Deciduous shrubland

Grassland Grassland Grassland

Globland30 LCCS Classification System Fine Classification System

Wetland Wetlands

Mangrove

Salt marsh

Tidal flat

Swamp

Marsh

Flooded flat

Saline

Impervious
surfaces

Impervious surfaces Impervious surfaces

Tunda Lichens and mosses Lichens and mosses

Bare land

Sparse vegetation

Sparse vegetation

Sparse shrubland

Sparse herbaceous cover

Bare areas

Bare areas

Consolidated bare areas

Unconsolidated bare areas

Water body Water body Water body

Permanent
snow/ice

Permanent snow/ice Permanent ice and snow



The overview of GSPECLib (Global land-cover Spectral Library) 

GSPECLib
CCI_LC2015

MCD43A4

The GSPECLib has been developed using MCD43A4 and CCI_LC2015. The geographical cell of GSPECLib was set as

1.43° × 1.43° equaling the size of second-level land grid and with a temporal resolution of 8 days. The GSPECLib has

exceeding 300 million spectral data.

The number of reflectance spectra in each 

GSPECLib geographical cell

The number of land-cover types in each 

GSPECLib geographical cell



The overview of GSPECLib (Global land-cover Spectral Library) 

Due to the cloud coverage, spectral similarity of vegetation-related types, the single-date Landsat image is usually not

able to provide sufficient features to accurately classify all land-cover types (such as: deciduous forest and evergreen

forest).



Global impervious surface mapping from multisourced remote sensing observations

• Although the independent optical imagery have been successfully employed for regional or global impervious mapping, accurate

estimation of impervious surfaces remains challenging due to the diversity of urban land covers, leading to difficulties of separating

different land covers with similar spectral signatures;

• As the optical imagery only capture the surface reflectance characteristics, while the synthetic aperture radar (SAR) data images

could provide the structure and dielectric properties of the surface materials, the incorporation of multi-source and multi-temporal

remote sensing imagery has been demonstrated to improve the impervious mapping accuracy



Global impervious surface mapping from multisourced remote sensing observations

SAR data and multitemporal features are important for accurate land cover mapping



Global impervious surface mapping from multisourced remote sensing observations

Using multitemporal Landsat and Sentinel-1 imagery, our automated impervious surface mapping method was integrated

on the Google Earth Engine platform and produced the accurate global 30 m impervious surface products. The results show

that:

• impervious surfaces are mainly concentrated in three continents: Asia (34.43 %), North America (28.04 %) and Europe (24.98 %),

followed by South America (5.89 %), Africa (5.63 %) and Australia (1.06 %). In addition, the zonal statistics indicate that 70 % of the

impervious surfaces are distributed between 30 ◦ N ~60◦ N.

•



Global impervious surface mapping from multisourced remote sensing observations

The accuracy of 6 sets of 30-m impervious surface products was verified using 15 typical test areas randomly

selected in the world (a total of 11942 verification points). The results show that the products generated in this

study have the highest accuracy performance (OA=95.1%) , Kappa=0.898), followed by GHSL-2015,

FROM_GLC-2015, GlobeLand30, HBASE-2010 and NUACI-2015.

Zhang, X., Liu, L., et al. Development of a global 30-m impervious surface map using multi-source and multi-temporal remote sensing

datasets with the Google Earth Engine platform, Earth Syst. Sci. Data, 12, 1625–1648, 2020



The overview of GLC_FCS30 land-cover dataset

Using time-series Landsat imagery during 2014-2016 and the globally distributed training samples from GSPECLib,

we trained the local adaptive classification model at each 5o×5o geographical tile, and generate the first global land-

cover products with fine classification system (GLC_FCS30) in 2015.



Quantitative accuracy assessment

Using the globally distributed 44503 validation points, which collected from multisourced and high-resolution remote

sensing imagery, the GLC_FCS30 is validated to achieve the overall accuracy of 82.5% and a kappa coefficient of

0.784 at level-0 classification system, and overall accuracy of 71.4% and kappa coefficient of 0.686 at level-1

classification system.



The cross-comparisons with several released land-cover products

• Compared with the CCI_LC and MCD12Q1 (coarse resolution of 300 m and 500 m), our GLC_FCS30 shows great advantages in

capturing these spatial details;

• Compared with FROM_GLC and GlobeLand30, the GLC_FCS30 outperforms with its greatly diverse over the classification

system, it contains exceeding 30 land-cover types.



The third-party validation and comparison in the Indonesia 

The research of high-precision land cover classification in tropical rainforest area is a challenge. The results of the

third-party nationwide inspection in Indonesia show that GLC_FCS30 not only has a finer classification system, but

also has a higher overall classification accuracy (65.69%), which is better than the Globeland30 (61.65%) and

Tsinghua FROM_GLC2015 (57.71%) of the National Basic Geographic Information Center.

GLC_FCS30

Globeland30

FROM_GLC

Distribution of Ground Cover Product
Inspection Samples in Indonesia

2010

2015

Kang, J. et al. Consistency Analysis of Remote Sensing Land Cover Products in the Tropical Rainforest Climate Region: A

Case Study of Indonesia. Remote Sens. 2020, 12, 1410.



The GLC_FCS30 dataset during 1985-2020 with interval of 5-years

GLC_FCS30 product from 1985 to 2020

In the past 35 years, the global forest and

shrubland area has decreased by 2.06 million

km2, cropland has increased by 1.1 million

km2, and impervious surface has increased by

0.58 million km2 (an increase of 112.5%).

The impervious surface of the
Yangtze River Delta increased by 4.8
times.

Using our GSPECLib-based land-cover classification algorithm and time-series Landsat imagery,

which broke through the key technologies of automatic global land-cover mapping and developed a

global land-cover product from 1985 to 2020—GLC_FCS30.

A global time-series 30 m land-cover product with a fine classification system

(GLC_FCS30) was developed.
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5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

The 2009 GlobCover product ‘‘cannot be used for any change detection application’’–not even for ‘‘direct

comparison with the previous GlobCover 2005 product’’(Bontemps et al., 2011)

Comparison of classes proportions between

GlobCover 2005 and 2009 land cover products
Proportion of pixels are not classified in the same

manner between the two GlobCover maps

The proportions of various types in classification results of 2005 and 2009 are relatively consistent. 

However, finally detected changed pixels far exceeded the real changes (Bontemps et al., 2011).

Most existing global land cover products adopt the strategy of independently classifying

time-series products, which will introduce a large number of "pseudo" changes in related

research on change detection, resulting in low classification accuracy.



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
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During 2010-2016, changed 

by 1.86%

Land-cover change 

proportion at different scales:

Existing land-cover products are insufficient to support land-cover change analysis!

Mi, J., Liu, L., Zhang, X., Chen, X., 

Gao, Y., & Xie, S. (2022). Impact of 

geometr ic  misregis t ra t ion  in 

GlobeLand30 on land-cover change 

analysis, a case study in China. 

Journal of Applied Remote Sensing, 

16(1), 014516.

• national scale: 1.86%;

• provincial scale: 2.77%;

• 1 km scale: 6.95%;

• 30 m scale: 10.6%



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

Visual interpretation Period by period classification
Change detection and dynamic 

update

Method
Human-computer interaction 

+ Visual interpretation

Multi-period training samples + 

Supervised classification

Time-series change detection 

+Machine learning

Fundamental

Use visual interpretation to

compare differences between

reference data and data to be

processed.

Select high-confidence training samples

period by period;

Classify each epoch independently

using a supervised classification model.

Use change detection model to detect

and extract changed pixels;

Train a classification model using stable

pixels to update the changed pixels.

Advantage

Make full use of expert prior

knowledge and image features

(such as spectral and texture).

High monitoring efficiency; data time

consistency isn’t considered.

Better temporal continuity; less human

intervention; high automation.

Disadvantage

Low efficiency; Larger

manpower and material

resources needed; high

subjectivity

Period-by-period training sample

selection requires a large manpower and

material resources; the accumulation of

period-by-period classification errors

leads to greater uncertainty.

Dynamic monitoring has a low

efficiency, a huge amount of calculations,

a number of input data and a complex

quantitative processing.

Datasets

1:100,000 China land use and 

cover dataset

FROM-GLC

GLC_FCS30 GLC_FCS30D

GlobeLand30

Time-series change detection and dynamic update products are expected to provide precise and

accurate understanding of global land cover changes.



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

Time-series land-cover change detection and classification algorithm

Xie S et al. (2022). Mapping the annual dynamics of land cover in Beijing from 2001 to 2020 using Landsat dense time series stack, ISPRS

Journal of Photogrammetry and Remote Sensing, 185, 201-218.
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5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

• We take advantage of the continuous change-detection model and full time-series Landsat observations to capture 25 the

time-points of changed pixels and identify the temporally stable areas;

• We derive high-confidence training samples from temporally stable areas of Global 30m land-cover product in 2020;

• Locally adaptive classification models are used to update the land-cover information for changed pixels;

• Temporal-consistency optimization algorithm is adopted to improve temporal stability and suppress false changes.

Global 30m prior land-

cover product in 2020

Full time-series Landsat 

observations

Mask region of 

change detection

Land-cover update results 

for changed pixels

Locally adaptive 

classification model

Continuous change-

detection model (CCDC)

Temporal-consistency 

optimization

Global 30-m land-cover 

dynamic product from 

1985 to 2022



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

 Global 30 m wetland dynamic mapping
In response to the current uncertainties in wetland monitoring, This study proposes a novel method for wetland

mapping by combining an automatic sample extraction method, existing multi-sourced products, satellite time-series

images and a stratified classification strategy, based on the complicated temporal dynamics and spectral heterogeneity of

wetlands. Wetlands are divided into 8 fine types. Overall accuracy is 86.95±0.44%, and kappa coefficient is 0.822.

Zhang, et al. (2023). GWL_FCS30: global 30 m wetland map with fine classification system using multi-sourced and time-series
remote sensing imagery in 2020. Earth System Science Data, 15(1): 265–293
Zhang, X., Liu, L., Zhao, T., et al. (2024). Global annual wetland dataset at 30 m with a fine classification system from 2000 to 2022.
Scientific Data, 11(1), 310.



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

Zhang et al. (2022) GISD30:
global 30 m impervious-
surface dynamic dataset from
1985 to 2020 using time-
series Landsat imagery on the
Google Earth Engine platform,
Earth Syst. Sci. Data, 14,
1831–1856

 Global 30 m impervious-surface dynamic dataset
A novel and automatic method of combining the advantages of spectral-generalization and automatic-sample-

extraction strategies was proposed, and then an accurate global 30 m impervious-surface dynamic dataset (GISD30) for 

1985 to 2020 was produced using time-series Landsat imagery. Overall accuracy is 90.1 % and kappa coefficient is 0.865.



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
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5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

Based on the continuous change detection algorithm, training samples from stable areas are used to

dynamically update changing areas. This approach has led to the development of a global 30 m land cover

dynamic monitoring dataset spanning from 1985 to 2022.

Deforestation and cropland expansion in 

South America accurately captured in 

GLC_FCS30D



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

 The enlargements of GLC_FCS30D

• The deforestation in South America is widely

recognized, and GLC_FCS30D clearly reflects

this trend. Namely, the early deforestation

showed a grid distribution, and then each grid

gradually extended outward and finally

connected into patches.

• In the Yangtze River Delta, GLC_FCS30D

depicts that the dominant land-cover change

over the enlargement is urbanization, and a

large quantity of irrigated cropland has been

converted to impervious surfaces. And urban

expansion was significantly faster before 2010

than after 2010 according to GLC_FCS30D.



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

A novel stratified random sampling global land-cover validation dataset
• We adopted the stratified equal-area sampling method to allocate 80,000 validation samples.

• A visual interpretation module that integrates spatiotemporal spectrum information was developed using 
Google Earth high-resolution images and time-series auxiliary data.

• The collection of validation dataset in 2020 has been completed, and that from 1985 to 2020 is being produced.

Zhao T et al. Assessing the Accuracy and Consistency of Six Fine-Resolution Global Land Cover Products Using a Novel Stratified 

Random Sampling Validation Dataset. Remote Sensing. 2023; 15(9):2285. https://doi.org/10.3390/rs15092285



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

Using multisourced remote sensing datasets, a novel interpretation tool is designed

on the GEE platform



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

GlobeLand30 FROM-GLC30 GLC_FCS30 FROM-GLC10 ESA_WC ESRI_LC

P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A. P.A. U.A.

CRP 86.39(±1) 76.00(±1) 47.02(±2) 74.36(±1) 83.36(±1) 73.55(±1) 55.03(±1) 77.88(±2) 61.99(±1) 87.61(±2) 65.13(±1) 86.28(±1)

FST 81.16(±1) 82.97(±2) 81.47(±2) 82.80(±1) 87.97(±1) 80.72(±2) 79.56(±2) 87.50(±1) 88.05(±1) 83.13(±1) 84.35(±1) 80.98(±2)

GRS 72.09(±2) 43.52(±2) 69.08(±1) 36.76(±2) 48.14(±2) 61.38(±2) 65.18(±2) 39.82(±2) 72.25(±2) 43.13(±2) 13.54(±2) 54.50(±3)

SHR 28.44(±2) 57.74(±2) 39.12(±4) 52.39(±2) 48.30(±2) 60.22(±2) 47.66(±5) 57.33(±2) 36.04(±4) 63.08(±2) 66.55(±2) 26.59(±2)

WET 63.08(±3) 52.32(±3) 2.20(±1) 43.60(±7) 49.33(±2) 41.37(±2) 4.30(±1) 47.85(±5) 33.90(±2) 50.38(±4) 27.01(±4) 45.36(±2)

WAT 85.27(±2) 86.32(±1) 88.18(±1) 77.48(±2) 81.37(±1) 92.68(±1) 87.07(±1) 89.22(±1) 90.48(±1) 89.72(±1) 87.05(±1) 86.84(±1)

IMP 69.39(±2) 58.20(±2) 48.31(±3) 69.17(±2) 75.33(±2) 75.28(±2) 73.41(±2) 65.70(±3) 82.99(±2) 86.89(±1) 88.42(±2) 43.36(±2)

BAL 73.48(±4) 93.59(±2) 83.17(±3) 86.51(±3) 85.69(±3) 79.76(±5) 89.31(±2) 80.32(±3) 81.00(±3) 82.70(±5) 44.41(±4) 91.11(±3)

SNI 94.21(±5) 95.22(±0) 88.81(±5) 96.45(±3) 93.15(±2) 93.14(±5) 93.50(±2) 83.81(±6) 92.57(±3) 95.65(±3) 95.13(±3) 78.27(±7)

O.A. 69.96(±9) 66.30(±8) 72.55(±9) 68.95(±8) 70.54(±9) 58.90(±7)

Kappa 0.6302 0.5589 0.6589 0.6064 0.6343 0.5394

Accuracy comparison of global land-cover products based on statistical sampling (2020)

Zhao T et al. Assessing the Accuracy and Consistency of Six Fine-Resolution Global Land Cover Products Using a Novel Stratified 

Random Sampling Validation Dataset. Remote Sensing. 2023; 15(9):2285. https://doi.org/10.3390/rs15092285



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

◆Time-series third-party validation dataset (EU LUCAS dataset) accuracy assessment 

for GLC_FCS30D

The GLC_FCS30D dataset has a mean overall accuracy of 81.91%(±0.09%) ranging from 81.64% (0.09%) 

to 82.11% (0.09%) in EU. Each accuracy indicator shows a good stability in the time dimension.

2006 2009 2012 2015 2018

P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE) P.A.(SE) U.A.(SE)

CRP 85.49(0.11) 93.37(0.08) 85.40(0.11) 93.31(0.08) 85.50(0.11) 93.17(0.08) 85.47(0.11) 93.05(0.08) 85.52(0.11) 92.82(0.08)

FST 95.22(0.08) 76.71(0.15) 94.97(0.08) 76.71(0.15) 94.79(0.09) 76.82(0.15) 94.36(0.09) 76.82(0.15) 93.71(0.09) 76.85(0.15)

GRS 6.13(0.26) 21.31(0.83) 6.10(0.26) 21.13(0.83) 6.05(0.26) 20.98(0.83) 6.08(0.26) 20.71(0.82) 5.99(0.26) 20.74(0.82)

SHR 8.13(0.42) 8.93(0.46) 8.25(0.43) 8.92(0.46) 8.02(0.42) 8.77(0.46) 7.84(0.42) 8.60(0.45) 8.35(0.43) 8.96(0.46)

WET 63.10(0.81) 66.55 (0.81) 61.40(0.81) 65.55(0.82) 61.86(0.81) 66.21(0.82) 62.64(0.81) 66.60(0.81) 62.94(0.81) 65.34 (0.81)

WTR 89.73(0.40) 92.44(0.36) 90.09(0.40) 92.53(0.35) 90.28(0.39) 92.36(0.36) 90.83(0.38) 91.63(0.37) 90.10(0.40) 91.56(0.37)

IMP 58.55(0.56) 72.69(0.56) 59.21(0.55) 72.06(0.56) 59.06(0.55) 71.72(0.56) 58.65(0.55) 70.85(0.56) 59.01(0.55) 70.29(0.56)

BAL 52.77(1.12) 39.62(0.95) 52.90(1.12) 38.44(0.93) 52.19(1.13) 37.70(0.93) 52.07(1.13) 36.16(0.90) 52.33(1.13) 34.69(0.87)

PSI 86.02(5.00) 35.01(4.38) 91.40(4.04) 36.56(4.38) 89.25(4.46) 31.86(4.00) 96.24(2.74) 31.40(3.81) 96.24(2.74) 31.35(3.81)

O.A.(SE) 82.11(0.09) 81.99(0.09) 81.97(0.09) 81.82(0.09) 81.64(0.09)



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

◆Time-series third-party validation dataset (American LCMAP dataset) accuracy 

assessment for GLC_FCS30D

The GLC_FCS30D achieves a mean overall accuracy of 79.50% (±0.50%) and varies from a high value

of 80.04% (± 0.49%) in 2015 to a low value of 78.91% (± 0.51%) in 2000. Both the producer’s

accuracy and user’s accuracy in various types have significant stability in the time dimension.



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

◆Comparison with GLanCE products supported by NASA MEASURES project

The GLanCE product will be a 30-meter spatial resolution data

record providing high quality representation of current and

past global land cover, land use and land cover change at

annual time steps from 2001 to 2019.

Classification System：
GLC_FCS30D: 35 land-cover types 

VS 
GLanCE: 7 land-cover types

Time Range：
GLC_FCS30D: 1985-2022 

VS 

GLanCE: 2001-2019



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

During 1985–2020, the net change area of global land cover reached 533.27 Mha, accounting for 3.63% of

the total land area (excluding Antarctica). Among them, forest changes and impervious surfaces expansion

are the most significant, the net forest loss area was 240.01 Mha, 4.84% decrease compared with 1985.

Impervious surfaces area increased 104.43% compared with 1985, with the largest relative increase and an

increased area of approximately 55.88 Mha.

 Overall status of global land cover changes



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

Figure Forest area change rate based on GLC_FCS30D

➢ Forest loss and forest gain show a significantly accelerating trend (0.37Mha/yr2, P<0.01; 0.18Mha/yr2,

P<0.01);

➢ Global forest area continues to decline, but the rate of decline has slowed since 2015;

➢ Global Forest Change is currently the only global 30 m forest change product (Hansen et al., Science, 2013).

the total forest damage of GLC_FCS30D from 2000 to 2020 is close to this dataset, but GLC_FCS30D can

better reflect the doubling of the global forest damage rate.

Time
forest loss area（Mha）

GFC GLC_FCS30D

2001-2005 91.67 73.78 

2006-2010 99.08 79.52 

2010-2015 123.04 104.36 

2016-2019 131.57(4 years) 142.00 

∑ 445.36(19 years) 399.67 

Global forest cover changes



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

The change area of each wetland subtype between 2000 and 2022 were calculated. The results showed that the
wetland area had a slight increasing trend (most of which occur in wetlands covered by seasonal water
bodies) due to the joint influence of global warming and human activities (construction of water
conservancy facilities).

 Global wetlands cover changes



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

The area of global impervious surfaces has significantly increased from 53.51 Mha in 1985 to 109.39 Mha

in 2020. The proportion of global land area (except for Antarctica) has increased from 0.36% to 0.74%,

showing a total growth area of 55.88 Mha and an augmentation of 104.43% compared to 1985 as well as

an average growth rate of 1.60 Mha/yr.

Global impervious surface changes



5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product

The comparisons with CCI-LC (ESA) and MCD12Q1 (NASA)

indicate that GLC_FCS30D achieves the optimal performance:

1) The CCI-LC dataset underestimated the forest cover in 2001,

i.e., some forests were wrongly labeled croplands; and some

deforested areas were not captured during the period 2001–

2020;

2) MCD12Q1 also suffered from a forest omission error, and showed

various land-cover distributions in wetland areas, which indicated

that MCD12Q1 has lower mapping accuracy and temporal

stability for these wetland areas.

The GLC_FCS30D adopted the continuous land-cover change

detection strategy, therefore, it achieves great spatiotemporal

stability and captures rich spatial details.

 The comparisons with other LCC products
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6-1: The carbon emission from global land-cover changes

✓Carbon loss from global forest loss were 34.22 ±

2.02 PgC during 1985–2020, with the loss rate more

than doubling.

✓The global carbon loss notably distributed on

rainforests and boreal forests.

The spatiotemporal characteristics of accelerated carbon emissions caused by global land-cover changes

from the perspectives of carbon loss and carbon sequestration were revealed.

◆Carbon sequestration from forest gain (9.84 ± 0.31

PgC) offset about 30% of the carbon loss above and

exhibited a similar spatial distribution.

◆The tropics contributed nearly 3/4 of global carbon

sequestration.



6-2: Global cropland area dynamics and analysis  

• Global cropland area has been expanded and lost by 3.703 million km2 and 2.759 million km2, respectively, and the net gain in

cropland area was 0.944 million km2 from 1985 to 2022, equivalent to 5.33% of the 1985 cropland area.

• Cropland area underwent a state of loss in the latitude range of 20ºN~40ºN, whereas the positive net change of cropland area was

primarily concentrated in the range of 30ºS ~ 10ºN (tropics).

• The proportions of cropland expansion were relatively high in Africa and South America, increasing by 26.33% (0.547 million

km2) and 32.11% (0.966 million km2) from 1985 to 2022



6-2: Global cropland area dynamics and analysis  

Global per capita cropland area decreased by 37.5%, from 0.347 ha in 1985 to 0.217 ha in 2022. On an

intercontinental scale, there was a declining trend in per capita cropland area across all continents from 1985 to 2022.

In particular, Oceania experienced the largest decline in per capita cropland area, with a decrease of 1.372 ha,

followed by North America with a decline 0.252 ha. Europe experienced the smallest decline in per capita

cropland area with a decline of 0.014 ha.



6-3: The drivers of global forest changes

Using multisourced remote sensing products to clarify the specific drivers (anthropogenic and natural factors) of

global forest loss. The results showed:

• Anthropogenic drivers have dominated global forest loss over the past two decades, accounting for about 80%,

primarily due to agricultural encroachment (38.0%) and forestry activity (18.2%);

• Natural drivers such as persistent drought (8.6%) and wildfires (5.4%) also led to nonnegligible forest loss;

• All drivers have been accelerating forest loss, and the increasing trend has yet to be mitigated.



6-4: The land-cover dynamics in typical island countries

The land-cover dynamics in two typical island countries (Papua New Guinea and Suriname). Overall, the

land-covers in these areas exhibit good stability, and the forests are well protected; detailedly, the urban

expansion and coastal changes (mangrove forests and tidal flats) also can be clearly captured.

Papua New Guinea

Suriname
Urban expansion 

Coastal changes and urban expansion

Port Moresby

Paramaribo



There is a long way to go, but the dawn is ahead

The world's first land-cover change dynamic update product, GLC_FCS30D (1985-2022), has been shared

with over 2 million people. The dataset has been downloaded more than 40 million times, totaling a

download volume of 10 petabytes, and has had a widespread impact.

The only set of long-term GLC products included in GEE
has been specially produced with animated videos to
demonstrate classification performance.

The dataset ranks first at the Earth Big Data sharing 
platform and is the most popular data product, with 
more than 1 million downloads.

Domestic and Foreign Platforms: The United Nations Species Diversity Database, UN-Habitat's EO Toolkit 

database, Earth Big Data Scientific Data Sharing Platform, OpenLandMap and Google Earth Engine Community.



Thanks！

Aerospace Information Research Institute, Chinese Academy of Sciences

Address：No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China

Tel：86-10-82178163       Fax： 86-10-82178009

Email：liuly@radi.ac.cn          Website：www.aircas.cn

https://data.casearth.cn/thematic/glc_fcs30 https://zenodo.org/records/8239305 

https://data.casearth.cn/thematic/glc_fcs30
https://zenodo.org/records/8239305

	Slide 1
	Slide 2: Contents
	Slide 3: 1. Introduction
	Slide 4: 1. Introduction
	Slide 5: 1. Introduction
	Slide 6: 1. Introduction
	Slide 7: 1. Introduction
	Slide 8: Contents
	Slide 9: 2. Quantitative pre-processing for Landsat imagery
	Slide 10: 2. Quantitative pre-processing for Landsat imagery
	Slide 11: 2. Quantitative pre-processing for Landsat imagery
	Slide 12: 2. Quantitative pre-processing for Landsat imagery
	Slide 13: 2. Quantitative pre-processing for Landsat imagery
	Slide 14: 2. Quantitative pre-processing for Landsat imagery
	Slide 15: 2. Quantitative pre-processing for Landsat imagery
	Slide 16: 2. Quantitative pre-processing for Landsat imagery
	Slide 17: 2. Quantitative pre-processing for Landsat imagery
	Slide 18: 2. Quantitative pre-processing for Landsat imagery
	Slide 19: 2. Quantitative pre-processing for Landsat imagery
	Slide 20: 2. Quantitative pre-processing for Landsat imagery
	Slide 21: 2. Quantitative pre-processing for Landsat imagery
	Slide 22: 2. Quantitative pre-processing for Landsat imagery
	Slide 23: 2. Quantitative pre-processing for Landsat imagery
	Slide 24: 2. Quantitative pre-processing for Landsat imagery
	Slide 25: 2. Quantitative pre-processing for Landsat imagery
	Slide 26: 2. Quantitative pre-processing for Landsat imagery
	Slide 27: 2. Quantitative pre-processing for Landsat imagery
	Slide 28: 2. Quantitative pre-processing for Landsat imagery
	Slide 29: 2. Quantitative pre-processing for Landsat imagery
	Slide 30: 2. Quantitative pre-processing for Landsat imagery
	Slide 31: 2. Quantitative pre-processing for Landsat imagery
	Slide 32: Contents
	Slide 33: 3. Forest disturbance monitoring and biomass mapping 
	Slide 34: 3. Forest disturbance monitoring and biomass mapping 
	Slide 35: 3. Forest disturbance monitoring and biomass mapping 
	Slide 36: 3. Forest disturbance monitoring and biomass mapping 
	Slide 37: 3. Forest disturbance monitoring and biomass mapping 
	Slide 38: 3. Forest disturbance monitoring and biomass mapping 
	Slide 39: 3. Forest disturbance monitoring and biomass mapping 
	Slide 40: 3. Forest disturbance monitoring and biomass mapping 
	Slide 41: 3. Forest disturbance monitoring and biomass mapping 
	Slide 42: 3. Forest disturbance monitoring and biomass mapping 
	Slide 43: 3. Forest disturbance monitoring and biomass mapping 
	Slide 44: 3. Forest disturbance monitoring and biomass mapping 
	Slide 45: 3. Forest disturbance monitoring and biomass mapping 
	Slide 46: 3. Forest disturbance monitoring and biomass mapping 
	Slide 47: 3. Forest disturbance monitoring and biomass mapping 
	Slide 48: 3. Forest disturbance monitoring and biomass mapping 
	Slide 49: 3. Forest disturbance monitoring and biomass mapping 
	Slide 50: 3. Forest disturbance monitoring and biomass mapping 
	Slide 51: 3. Forest disturbance monitoring and biomass mapping 
	Slide 52: 3. Forest disturbance monitoring and biomass mapping 
	Slide 53: 3. Forest disturbance monitoring and biomass mapping 
	Slide 54: 3. Forest disturbance monitoring and biomass mapping 
	Slide 55: 3. Forest disturbance monitoring and biomass mapping 
	Slide 56: 3. Forest disturbance monitoring and biomass mapping 
	Slide 57: 3. Forest disturbance monitoring and biomass mapping 
	Slide 58: 3. Forest disturbance monitoring and biomass mapping 
	Slide 59: 3. Forest disturbance monitoring and biomass mapping 
	Slide 60: Contents
	Slide 61: The overview of land-cover mapping methodology
	Slide 62: The fine classification system in GLC_FCS30 (containing 35 land-cover subcategories)
	Slide 63: The overview of GSPECLib (Global land-cover Spectral Library) 
	Slide 64: The overview of GSPECLib (Global land-cover Spectral Library) 
	Slide 65: Global impervious surface mapping from multisourced remote sensing observations
	Slide 66: Global impervious surface mapping from multisourced remote sensing observations
	Slide 67: Global impervious surface mapping from multisourced remote sensing observations
	Slide 68: Global impervious surface mapping from multisourced remote sensing observations
	Slide 69: The overview of GLC_FCS30 land-cover dataset
	Slide 70: Quantitative accuracy assessment
	Slide 71: The cross-comparisons with several released land-cover products
	Slide 72: The third-party validation and comparison in the Indonesia 
	Slide 73: The GLC_FCS30 dataset during 1985-2020 with interval of 5-years
	Slide 74: Contents
	Slide 75: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 76: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 77: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 78: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 79: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 80: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 81: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 82: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 83: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 84: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 85: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 86: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 87: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 88: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 89: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 90: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 91: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 92: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 93: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 94: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 95: 5. GLC_FCS30D: Global 30-m land-cover dynamic monitoring product
	Slide 96: Contents
	Slide 97: 6-1: The carbon emission from global land-cover changes
	Slide 98: 6-2: Global cropland area dynamics and analysis  
	Slide 99: 6-2: Global cropland area dynamics and analysis  
	Slide 100: 6-3: The drivers of global forest changes
	Slide 101: 6-4: The land-cover dynamics in typical island countries
	Slide 102: There is a long way to go, but the dawn is ahead
	Slide 103

