

Capacity Building Workshop for Small Island Developing States:Leveraging Big Earth Data to Evaluate the SDGs Progress

Al Powered Big Earth Data Platform form SDGs: Infrasturcture, System and Applications

Yuchu Qin (qinyc@aircas.ac.cn)

3 Sep 2025

CONTENT

AI-Big Data for SDGs with Cloud Computing

Infrastructure at CBAS

Big Earth Data Platform

Applications for SDGs

Lab Exercise

CONTENT

AI-Big Data for SDGs with Cloud Computing

Infrastructure at CBAS

Big Earth Data Platform

Applications for SDGs

Lab Exercise

- UN introduced SDGs in 2015, to be completed by the year 2030
- * 17 Sustainable Development Goals (SDGs)
- * 169 SDGs targets
- * 231 unique indicators

Earth Observation for SDG Monitoring

Regular and repeatable observations IMPROVEMENTS 1. Better integrate EOs data with national statistics 2. Improve capacity to analyse EO data 3. Increase use of cloud computing facility to analyse data

ADVANTAGES

Cost-effective to

monitor remote areas

Source: https://eo4society.esa.int/wp-content/uploads/2021/01/EO Compendium-for-SDGs.pdf

Cloud Computing

From Hardware to software-defined resources: VIRTUALIZATION

Cloud Computing

On-demand scalable distributed environment for computing, storage and networking

Conventional solution for machine learning:

Gene Expression

Geological Data

Neural Network: From shallow to deep

DNN: Google Tensorflow playground

LOCALLY CONNECTED NEURAL NE

Example: 1000x1000 ima

1M hidden unit Filter size: 10: 100M paramet

Convolutional Neural Network

Convolutional filter

CNN: Convolutional Operator for Image

Data is the key source of SDGs

Ground-based instruments used to observe precipitation include rain gauge tipping buckets, cylinders, and disdrometers & radar systems [top]

A sensor pod from NASA – Jet Propulsion Laboratory

The GOES-R Series—a collaborative program between NASA and NOAA.

Argo floats are used to observe the ocean [image from Commonwealth Scientific and Industrial Research Organization]

Researchers with the University of Alaska-Fairbanks (UAF) use small aircraft such as the Havilland DHC-3 Otter. Credit: UAF

Space-based Satellites

Airborne

Ground-based

In Situ

The data GAP of SDGs

可持续发展

Basic information about global SDGs

- 17target, 230+indicators
- UN TFM, Supporting SDGs realization via STI
- Tier I: clear method, has data (33%)
- Tier II: clear method, no data (30%) [...]
- Tier III: no method, no data (37%)

More than 67 international organizations carry out the SDGs indicator assessment

Of the 93 environmental related SDGs indicators, there are 22 (23 percent) with good progress, not sufficient data to assess progress (68 percent) or unlikely realize without upscaling action (9 percent).

Figure 1. Global Scorecard on the environmental dimension of the SDGs based on extrapolation of data to 2030

The Paradigm of AI+Data for SDGs

OPEN Data + OPEN Models -> Open Science for SDGs

Deep Neural Networks

SDG indicators

CONTENT

AI-Big Data for SDGs with Cloud Computing

Infrastructure at CBAS

Big Earth Data Platform

Applications for SDGs

Lab Exercise

Mission of CBAS

BIG EARTH

Data

- Develop SDG data infrastructure and information and data products
- Provide new knowledge for SDG monitoring and evaluations
- Develop and launch a series of SDG Satellites
- Establish a think tank for STI to promote SDGs
- Capacity development for SDGs in developing countries

SDG Cloud Platform

The Platform: Tech Goals

- Manage huge amount of Big Earth Data at scale
- Multi-source data integration(ETL)
- Multi-dimentional modelling
- Data quality control and metadata compiling
- Data access in distributed environment with APIs
- □ Process Big Earth Data at scale
- Image processing algorithms at cloud computing platform
- Feature data processing algorithms
- Machine learning(Deep learning)
- Algorithm access with restful APIs
- Web-based application system
- User session control
- Report generation

Architecture: Tech Stacks

Web-based Visuliazation

Big Data-driven Analytics

Big Earth Data Management

Scalable **Enviroment**

Cloud Enabled

Tech Stacks

Architecture: Tech Stacks

Application Development Application Management Platform Management **Development Tool Resource Operations and Application** Maintenance Jupyter VS Deployment Services SSH Lab Code **Application Store Resource Monitoring Operating Environment** TensorF Pytorc Caffe low h **Cluster Partitioning** Multi-Level Quotas **Platform Model Library Storage Service** Mirror Repository Resource Management and Scheduling (Kubernetes+Docker) Infrastruct Servers Storage Network **GPU CPU** ure

- ContainerizedMicroservicesArchitecture
- Cloud Computing and StorageResources
- Online flexible development environment
- Multi-user resource sharing
- From IAAS\PAAS to SAAS

Cloud Services for SDGs

HPC & Cloud Computing

- 12000 cores for meteorological and oceanographic modelling
- 10000 VMs for high-throughput computing

Data Storage, Publishing and Sharing

- 50PB storage capacity
- Data linking, data recommendation and sorting
- Data discovery in various ways

Big Data Mining & Analysis in Cloud

- DataBank: a complete chain for multidisciplinary data,
 computing and analysis
- DataBox: an efficient query & access engine for RS data

Application Service

- Online Computing and Processing Toolkit for Specific SDG indicators
- On-demand Data Processing and Analysis

CONTENT

AI-Big Data for SDGs with Cloud Computing

Infrastructure at CBAS

Big Earth Data Platform

Applications for SDGs

Lab Exercise

SDG Big Data Platform

- The SDG Big Data Platform provides rich data resources and cloud services for SDGs monitoring and assessment
 - With 16PB data covering multiple subjects, such as geography, remote sensing, ground monitoring, and social statistics;
 - Characterize and Profile Scientific Workflows
 featuring lifecycle Big Earth Data management,
 including massive data storage, curation,
 computation, analysis and visualization;
 - Integrate over one hundred algorithms and tools for advanced data analysis and management;
 - Provide one-stop cloud services through the bilingual portals to support the UN Sustainable Development Goals.

Http://sdg.casearth.cn

Collected data resources for SDGs

16.4PB
Total Data

40 years
Satellite imagery

7.7 million scenes

Satellite data products

10PB
Bio-ecological data

4.8PB
Remote sensing data

Basic geographic data
Ground observation data
Atmospheric and oceanographic data

920,000 GBDB data records

4.08 million
Lists of biological
species in China

520,000
Microbial resource data

1 billion
Omics data

Data Analysis As Service: EarthDataMiner

- Online interactive data analysis environment
 - Integrated with DataBank: upload models, select data, and process data products through instruction operations
 - Algorithm & Model library: more than 150 algorithms developed and provide cloud service:
 FAAS(Function As A Service)
 - Web IDE: supporting users to write data analysis code (Python) online

SDGs indicator on-demand computing

1. Upload data to the EarthDataMiner system

3. Search radar data from Databank develop by CASEarth

2. Write python code to preprocess data

4. Compute the SDGs Indicator and Visualizaiotn

SDGs indicators on demand analysis Tools

SDG15.3.1 Land degradation index assessment

SDG13.2.2 Annual average CO2 concentration evaluation

SDG15.1.1 Forest coverage detection

SDG6.6.1 Surface water change over time indicator

SDG13.1.1 Natural disaster impact evaluation

SDG11.3.1 Global urbanization index monitoring

Converged Virtual Research Environment : SDG Workbench

- Data be accessed by applications/machine Transparently
- > SDGs Tools
 - ✓ Integrated Tools
 - ✓ Data Analysis Tools
 - ✓ Data Products Tools
- > Open-source Tools
 - ✓ Developing
 - ✓ Machine Learning
 - ✓ Data Visualization
- Creating / Using / Releasing Spark
 Cluster On-demand
- Cloud-Native DevOps CI/CD
- Virtual Collaboration
 - Setup a virtual team or virtual organization

DESP: digital earth foundation platform (DESP Explore)

- Extensibility/flexibility: Plugin-framework
- C/S and B/S: Uniform interface style
- DESP Development Engine (kit)

C/S Version

Heat Map

Vector data visualization

Profile analysis

comparative analysis

B/S Version

DESP: digital earth foundation platform (DESP Explore)

DESP: digital earth foundation platform (DESPWExplore)

DESP: digital earth foundation platform (DESP Explore)

CONTENT

AI-Big Data for SDGs with Cloud Computing

Infrastructure at CBAS

Big Earth Data Platform

Applications for SDGs

Lab Exercise

Visualizing SDGs progress at scale

Applications for the Public and Decision-Makers

- Integration of Multiple Data Sources:
 United Nations Statistics Division, World Bank, World Health Organization,
 Wikipedia
- ➤ Visualizing indicators for the 17 SDGs at National scale
- Multi-dimensional analysis

National-level assessment of SDGs indicators and Data Visualization

SDG15.3.1 LDN

➤ Goal 15, Target 3

- > By 2030, combat desertification, restore degraded land and soil, including land affected by desertification, drought and floods, and strive to achieve a land degradation-neutral world
- \triangleright UNCCD: custodian agency (\leftarrow CBD, UNFCCC, UNEP)

> SDG indicator 15.3.1:

Proportion of land that is degraded over total land area

GGW-BDF & SDG15.3.1 LDN

 provide high spatial resolution datasets on land cover, land productivity and soil carbon change to better track the progress of LDN.

GGW-BDF & SDG15.3.1 LDN

 provide high spatial resolution datasets on land cover, land productivity and soil carbon change to better track the progress of LDN.

Real-time Wildfire Monitoring

- Global Fire Spot Extraction
- **→** Historical Fire Event Analysis
- Burnt Area Mapping
- Weather Data Visualization
- ➤ Integrated Fire Spot Analysis
- ➤ Real-time Online Computing-supported
 Fire Monitoring and Decision Support

Fire assessment, visualization and decision supported by multi-source data

Digital Heritage

Through the DESP and virtual reality technology, 3D reconstruction of the Angkor site was realized as well as 3D virtual tour and interactive functions. The virtual reality system of the Angkor site is built to facilitate the management and conservation of the world heritage site.

Region climate simulation for SDG13

Data resources & models

Regional demonstration

数据下载选择-格式

Continental Scale Building Footprint Mapping for Developing Countries

Exsiting Benchmark Data sets for building roof segmentation

Name	Coverage Continent and Country							D 10	G	Num of	
	Asia	Europe	North America	South America	Africa	Oceania	Coverage City	Resolution (cm)	Coverage Area(km²)	Buildin g Vector	Data Type
Massachusetts	-	-	USA	-	+	-	Boston	100	340	254327	RGB
SpaceNet Challenge	China	-	USA	Brazil	Sudan	-	Paris ,Shanghai ,Las Vegas, Atlanta, Khartoum .etc	30-50	5555	685000	8-Band Imagery
Inria	-	Austria	USA	-	-	-	Chicago, Austin, Vienna ,Tyrol .etc	30	810	543672	RGB
WHU	China	Italy Spain	USA Canada	Chile	Egypt	New Zealand	Wuhan ,Los Angles ,Ottwa ,Cairo, Milan, Santiage, Cordoba .etc	7.5-30	1310	22000	RGB
DeepGlobe Challenge	China	France	USA	-	Sudan	-	Las Vegas ,Khartoum, Shanghai ,Paris .etc	31	9623	3020701	8-Band Imagery
AIRS	-	-	-	-	-	New Zealand	Christchurch	7.5	457	220000	RGB

Motivation:

- Open source image dataset from public maps
- Large scale building footprint for developing countries
- Ready for deep learning models

CBAS

Continental Scale Building Footprint Mapping for Developing Countries

Continental Scale Building Footprint Mapping for Developing Countries

①Set type of segmentation: set the pixel value which represents building to 1, Set the background pixel to 0.

Images

Labels

Baseline Models:

PSP-Net
Pyramid Scene
Parsing Network

DeepLabV3
Atrous
convolution

DeepLabV3+

Effective decoder module

PointRend Segmentaion as rendering task

SegFormer
Transformer as
backbone

CBAS

Continental Scale Building Footprint Mapping for Developing Countries

Algorithm assessment at global scale

Evaluation of Baseline Models

Backbone	Model	Precision	Recall	F-value	PA	mPA	mIoU	OA
	PSPNet	90.52	90.64	90.58	96.87	94.80	89.74	96.87
ResNet50	DeepLabV3	90.6	91.46	91.03	96.68	94.33	89.77	96.68
210021000	DeepLabV3+	91.55	92.32	91.93	97.01	94.9	90.73	97.01
	PointRend	90.91	92.33	91.61	96.9	94.59	90.4	96.9
	PSPNet	91.11	92.07	91.59	96.88	94.66	90.36	96.88
ResNet101	DeepLabV3	90.99	92.5	91.74	96.95	94.65	90.53	96.95
Residenti	DeepLabV3+	91.71	92.03	91.87	96.98	94.95	90.66	96.98
	PointRend	91.02	92.26	91.64	96.91	94.64	90.42	96.91
Transformer	SegFormer	90.21	91.56	90.88	96.63	94.16	89.62	96.63

DeepLabV3+ achieved the best results, mIoU> 90%, OA>96% for rest of the models.

Algorithms for crack detection of the dam and rock slopes

Algorithms for crack detection of the dam and rock slopes

Automatic identification of steel plants / cement plants / power plants

Manual interpretation:

Total: 166

Error: 48

Missing: 21

Al models:

Total: 175

Error: 43

Missing: 7

Coincide: 118

New findings: 21

Data: GF1 / 2m

Area: 220,000km²

Time: 2.5h, @4GPU

5-7days (Manual)

Disasters simulation and early warning

DESP@CBAS is open to all!

CONTENT

AI-Big Data for SDGs with Cloud Computing

Infrastructure at CBAS

Big Earth Data Platform

Applications for SDGs

Lab Exercise

SDG Big Earth Data Platform

https://sdg.casearth.cn/en

Visualizing global SDGs

http://opendbar.casearth.cn/terraview-sdgs/

Mapping land degradation with big earth data

https://sdg.casearth.cn/en/onlineTools/GGWBDF

Mapping land degradation with big earth data

http://earthdataminer.casearth.cn/ldn/dataportal

Mapping wildfires with big earth data

http://opendbar.casearth.cn/terraview-fire/

Design your own digital earth apps

http://desp.casearth.cn/portal/#/home

Coding AI model with SDG cloud

Challenge yourself for 1 hour !!!

Thanks

No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China

Tel: +86-10-82178985

Fax: +86-10-82178980 Http://:www.cbas.ac.cn