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Abstract 

With the advent of innovations in artificial intelligence such as ChatGPT, such technologies have the ability to 
revolutionize communications, research, and human expression. Given that the energy efficiency of the 
information and communication technologies (ICTs) is estimated to contribute 2-4% of the world’s global 
greenhouse gas emissions, however, the energy and carbon demand of such machine learning models poses a 
threat to achieving net zero emissions by 2050, as demand for artificial intelligence applications only grows. 
While work is already underway for reducing the electricity consumed and equivalent carbon dioxide emitted 
for model training and inference, further progress will require action from policymakers, researchers, and 
industry experts. Three initial recommendations for addressing this issue include 1) investment in and 
collaboration on green AI research efforts, 2) development of better reporting and tracking practices of energy 
and carbon impact of machine learning models, and 3) creation of industry standards for both reducing and 
offsetting greenhouse gas emission in pursuit of the 2050 net zero emissions goal.  
 

 

“ChatGPT is a large language model developed by 
OpenAI, designed to simulate human-like 
conversation. It uses deep learning algorithms to 
understand natural language and generate 
responses that are contextually relevant and 
coherent. ChatGPT has been trained on a massive 
corpus of text data, including books, articles, and 
online content, which allows it to generate a wide 
range of responses on a variety of topics. The goal 
of ChatGPT is to provide users with an engaging 
and informative conversational experience that 
feels as close to talking to a human as possible” 
(ChatGPT, 2023).  

Launched in November 2022, ChatGPT has already 
reshaped the way that people across the globe 
communicate, taking everyday writing tasks and 
churning out responses within seconds. While it 
should be noted that ChatGPT’s “outputs may be 
inaccurate, untruthful, and otherwise misleading at 
times” per its FAQs (Staudacher, 2023), its sheer 
speed and flexibility allows the model to be broadly 
applicable for basic writing tasks, from cover 
letters, to public service announcements, to even 
this policy brief itself.  
 
Because of this, usage of the ChatGPT web app has 
skyrocketed, hitting 616 million visits to the 
chat.openai.com website in January and over 1 
billion visits this past month (Carr, 2023). As of 
writing, estimates of the model’s energy 

consumption for January 2023 are on the order of 
4,200 MWh, assuming that its 13 million users 
made 15 requests per day and the model was run 
on Nvidia A100 GPUs (Ludvigsen, 2023b). This 
makes the model’s electricity usage roughly 
equivalent to 30,000 Danish citizens, not including 
the additional 1,287 MWh required for developing 
its underlying model, OpenAI’s GPT-3 (Ludvigsen, 
2023a). These energy figures are on the magnitude 
as other large language models (LLMs), such as 
BigScience Workshop’s BLOOM which consumed 
433 MWh (Luccioni et al., 2022) or Google’s GLaM 
which consumed 456 MWh (Patterson et al., 2022) 
for training. BLOOM was also found to consume a 
similar amount of energy as ChatGPT, at roughly 
0.00396 kWh per query (Ludvigsen, 2023a).  
 
If ChatGPT drew its electricity from the average 
American power grid, using the EPA’s estimate of 
0.855 lbs. (0.388 kgs.) of equivalent CO2 (CO2e) 
emitted per kWh of electricity in 2021 (EIA, 2022) 
means that the model’s training and January 
deployment energy usage would have released 
about 2,100 metric tons of CO2e into the 
atmosphere, which is little less than that released 
from the entire lifespan of 37 cars, given an average 
of 126,000 lbs. (approx. 57,000 kgs) (Strubell et al., 
2019). This estimate does not include the 
additional emissions from powering the servers, 
network equipment, and client-side devices for 
using ChatGPT’s web application. 
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Given that the carbon footprint of the Information 
Communication Technology (ICT) sector is already 
estimated to be 2.1%-3.9% of global greenhouse 
gas (GHG) emissions (Freitag et al., 2021), the 
unprecedented growth and energy consumption of 
training and deploying LLMs such as that used for 
ChatGPT poses a threat to the IPCC’s goal of 
reducing net greenhouse gas emissions to zero by 
2050 (IPCC, 2018). Even with current efforts to 
reduce and offset GHG emissions, broad agreement 
exists that the energy demand of ICTs will continue 
to grow due to rebound effects and significant 
investment in emerging technologies, such as the 
developments in natural language processing 
(NLP) described above (Freitag et al., 2021). Thus, 
generating policy for the tracking and development 
of greener AI applications would not only be 
prudent for addressing the ongoing climate crisis, 
but would moreover provide opportunities for 
further pursuing the sustainable development 
goals of renewable energy, resilient infrastructure, 
and global partnerships.  
 
Energy Consumption 

Energy consumed for the training and inference of 
machine learning models can be grouped into two 
categories: (1) dynamic, which includes the energy 
drawn from all CPU, GPU, and main memory 
sockets, and (2) idle, which consists of cooling and 
network infrastructure.  
 
For training, dynamic power consumption is 
calculated by multiplying the number of training 
hours by the sum of the product of thermal design 
power times the number present in the system of 
each component (Strubell et. al., 2019). Thermal 
design power can accurately represent GPU power 
during training, since GPUs ideally have100% 
utilisation (Luccioni et al., 2022). Idle power 
consumption can then be factored in via separate 
measurement and calculation (like in Luccioni et 
al., 2022) or power usage effectiveness (PUE), an 
industry metric that gives the ratio between the 
total data center energy consumed and the energy 
consumed by its computing equipment (Patterson 
et. al., 2022). While the industry average for PUE 
was 1.58 in 2020, groups such as (Patterson et. al., 

2022) can take advantage of the lower PUE, approx. 
1.1, of cloud providers to reduce the energy 
consumption of their models.  
 
The same methodology can be mostly followed for 
deployment, however, it should be noted that the 
real-time nature of queries means that 
optimization techniques such as batching and 
padding cannot be used to reduce energy 
consumption (Luccioni et. al., 2022). More research 
into tracking real-time model inference power 
usage is required to better estimate energy 
consumed during deployment.  
 

Greenhouse Gas Emissions 
Greenhouse gas emissions from training and 
deploying machine learning models can be grouped 
into two categories: (1) operational, which covers 
the GHG emitted from electricity consumed 
dynamically and idly, and (2) lifecycle, which 
includes the GHG emitted from the materials and 
processes required for the manufacture, transport, 
and disposal of all components employed 
(Patterson et al., 2022).  
 
For operational GHG emissions, the methodology 
described in the energy consumption section can 
be reused for calculating the CO2e emitted during 
both training and inference, with an additional step 
for multiplying the total energy used by the carbon 
intensity of the associated power grid. While the 
average carbon intensity of the national grid is 
sufficient for estimating the GHG emitted in some 
cases, such as in (Strubell et al., 2019), each data 
center’s carbon intensity will vary based on its 
location and energy available. Estimating 
operational emissions can quickly become difficult 
for models deployed through web applications like 
ChatGPT, which can be hosted in multiple locations, 
each with its own energy mix that can even vary 
throughout the day (Pointon, 2023). While such 
metrics are not publicly available for all such 
centers, this fact has been successfully leveraged to 
decrease the total emissions of model training and 
inference, as shown in (Patterson et al., 2022) and 
(Luccioni et. al., 2022).  
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Likewise, calculating the lifetime GHG emissions of 
model training and deployment is not a simple task. 
The embodied emissions for a process is equal to 
the total GHG emitted during the manufacture over 
the time of use for a given component used 
(Luccioni et al., 2022). For an LLM such as BLOOM, 
embodied emissions were found to be 0.056 kg and 
0.003 kg of CO2e emitted for each hour of server and 
GPU time, respectively, resulting in an additional 
11.2 metric tons of equivalent CO2 (CO2e) for 
training the model (Luccioni et. al., 2022). While 
this only represented 22.2% of the emitted CO2e 
from the model’s life cycle, this number did not 
account for the other network infrastructure or 
cooling equipment necessary for model training 
(Luccioni et. al. 2022). Characterising embodied 
emissions for model deployment would also have 
to include estimates for client-side devices, which 
would include phones, laptops, personal 
computers, TVs, and other smart devices. Further 
research is necessary to fully characterise the 
embodied emissions of artificial intelligence 
applications and other ICTs.  
 
Policy recommendations 

Given the above information, policymakers, 
researchers, and industry experts should 
collaborate on the following actions: 
 
Research 

1. Invest in development of more energy- 
efficient algorithms, hardware, data center 
equipment, and other practices 

2. Pool resources for energy-efficient 
equipment and share best practices for data 
center management 

3. Identify and promote locations across the 
globe that have the potential for more 
renewable energy and lower carbon 
intensity data centers 

 
Transparency 

1. Establish and maintain metrics and 
standards for evaluating the energy-
efficiency of training and deploying machine 
learning models, such as that described in 
(Henderson et al., 2020) 

2. Incentivize the reporting of embodied 
emissions and carbon intensity for 
hardware and data centers used for training 
and deploying machine learning models 

3. Inform the public regularly about the energy 
and carbon impact of artificial intelligence, 
and what measures have been taken to 
mitigate said impact 

 
Accountability 

1. Create a plan for reducing machine learning 
models GHG emissions for pursuing net zero 
emissions by 2050 

2. Measure and characterize the indirect 
impact of artificial intelligence on the GHG 
emissions of other sectors, including the 
potential rebound effects described in 
(Freitag et al., 2021) 

3. Incentivize self-regulating companies and 
other organizations to pursue standards for 
permanence, verifiability, and additionality 
(Freitag et al., 2021) in their own efforts to 
offset their GHG emissions 

 
While it can be tempting to adopt a pessimistic 
view of artificial intelligence and ICTs due to their 
rapid growth, it should always be noted that 
substantial work is already underway to reduce the 
energy consumed and GHG emitted by machine 
learning models. Patterson et al. report that their 
LLM GLaM only emitted 40 metric tons of CO2e in 
the model’s training, which is almost 14x smaller 
than the 552 tCO2e emitted for GPT-3 (2022). As of 
writing, it is unfortunately unknown what the 
lifecycle emissions of the model are, as the 
embodied emissions for the TPUs used for training 
are not available. While it is important to recognize 
that improving LLM energy efficiency does not 
necessarily decrease their carbon footprint due to 
rebound effects (Freitag et. al., 2021), developing 
improvements in both metrics will be required for 
decreasing the overall impact of AI. With the proper 
actions taken for improving research, 
transparency, and accountability for machine 
learning models, however, such information could 
not only help mitigate climate change but also 
usher in a world with cleaner energy, greater 
innovation, and stronger partnerships.  



 

4 

 

Acknowledgments 

I would like to acknowledge and thank Professor 
Rider Foley and Bill Kelly for their contributions in 
drafting and revising the above brief through the 
Policy Internship Program at the University of 
Virginia. 
 

References 

Boudreau, C. (2023, February 14). I asked ChatGPT 
 

about its carbon footprint and it didn’t have a real 
answer. Business Insider.  

 
Brown, T. B., Mann, B., Ryder, N., Subbiah, M.,  

Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., 
Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., 
Krueger, G., Henighan, T., Child, R., Ramesh, A., 
Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). 
Language models are few-shot learners. arXiv.  

 
Carr, D. F. (2023, March 7). ChatGPT Topped 1  

Billion Visits in February. Similarweb Blog.  
 
ChatGPT. (2023, March 8). Re:What is ChatGPT?  
 
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P.  

de O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., 
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., 
Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., … 
Zaremba, W. (2021). Evaluating large language 
models trained on code. arXiv.  

 
Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin,  

D., Xu, Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., Zoph, 
B., Fedus, L., Bosma, M., Zhou, Z., Wang, T., Wang, Y. 
E., Webster, K., Pellat, M., Robinson, K., … Cui, C. 
(2022). Glam: Efficient scaling of language models 
with mixture-of-experts. arXiv. 

 
EIA. (2022, November 25). Frequently asked  

questions (FAQs) . United States Energy Information 
Administration. 

 
Freitag, C., Berners-Lee, M., Widdicks, K., Knowles,  

B., Blair, G. S., & Friday, A. (2021). The real climate 
and transformative impact of ICT: A critique of 
estimates, trends, and regulations. Patterns, 2(9), 
100340. 

 
Henderson, P., Hu, J., Romoff, J., Brunskill, E.,  

Jurafsky, D., & Pineau, J. (2020). Towards the 
systematic reporting of the energy and carbon 
footprints of machine learning. The Journal of 
Machine Learning Research, 21(1), 248:10039-
248:10081. 

 
IPCC. (2018). Special Report—Global Warming of  

1.5 ºC. Intergovernmental Panel on Climate Change.  
 
Luccioni, A. S., Viguier, S., & Ligozat, A.-L. (2022).  

Estimating the carbon footprint of BLOOM, a 176B 
parameter language model. 

 
Ludvigsen, K. G. A. (2023a, March 5). Chatgpt’s  

electricity consumption. Medium.  
 
Ludvigsen, K. G. A. (2023b, March 5). ChatGPT’s  

electricity consumption, pt. II. Medium.  
 
Patterson, D., Gonzalez, J., Holzle, U., Le, Q., Liang,  

C., Munguia, L.-M., Rothchild, D., So, D. R., Texier, M., 
& Dean, J. (2022). The carbon footprint of machine 
learning training will plateau, then shrink. Computer, 
55(7), 18–28. 

 
Patterson, D., Gonzalez, J., Le, Q., Liang, C.,  

Munguia, L.-M., Rothchild, D., So, D., Texier, M., & 
Dean, J. (2021). Carbon emissions and large neural 
network training. arXiv. 

 
Pointon, C. (2023, March 3). The carbon footprint of  

ChatGPT. Medium.  
 
Roehrl, R. A. (2021). Impacts of new Internet  

applications and artificial intelligence on global 
energy  demand – an issue of concern? (Emerging 
Science, Frontier Technologies, and the SDGs - 
Perspectives from the UN System and Science and 
Technology Communities, pp. 165–171).  United 
Nations Interagency Task Team on Science, 
Technology and Innovation for the Sustainable 
Development Goals.  

 
Staudacher , N. (2023, February). ChatGPT General  

FAQ. OpenAI.  
 
Strubell, E., Ganesh, A., & McCallum, A. (2019).  

Energy and policy considerations for deep learning 
in NLP. 

 
UN. (2022a). Goal 7 | Ensure access to affordable,  

reliable, sustainable and modern energy for all. 
Sustainable Development; United Nations 
Department of Economic and Social Affairs. 

 
UN. (2022b). Goal 9 | Build resilient infrastructure,  

promote inclusive and sustainable industrialization 
and foster innovation. Sustainable Development; 
United Nations Department of Economic and Social 
Affairs. 

 
UN. (2022c). Goal 17 | Strengthen the means of  



 

5 

 

implementation and revitalize the Global 
Partnership for Sustainable Development. 
Sustainable Development; United Nations 
Department of Economic and Social Affairs. 


