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Abstract 

Artificial Intelligence (AI) in agriculture can promote sustainable farming practices, increase profitability, and reduce 

environmental impacts. However, careful assessment of this technology is needed to ensure benefits for 

smallholders. From a governance perspective, appropriate arrangements are needed to improve the sustainability 

of food and agriculture systems. A justice-based governance lens can ensure that data acquired and processed by AI 

models is accessible and usable by smallholder farmers without reproducing social inequalities and dependencies. 

Analyzing the potential of Artificial Intelligence models and the data they use through a justice-based lens could help 

steer technology development toward sustainability. 

Smallholder farmers, Artificial Intelligence, 

and technological inequity 

Artificial Intelligence (AI) applications in agriculture 

have the potential to promote sustainable farming 

practices using localized agroclimatic farm data at the 

appropriate time and location to increase farm 

profitability and reduce negative impacts on the 

environment. However, this optimistic scenario is 

based upon high uncertainty about technology 

adoption and requires adaptation to the multiplicity of 

local configurations that agriculture may take. These 

challenges are specifically severe for smallholder 

farmers. Five of every six farms in the world are less 

than two hectares (approximately 5 acres) and 

smallholders still account for 35 percent of the total 

world food production and are known to be critical for 

building climate change resilience in agriculture1.  

There is an urgent need to place smallholders at the 

front and center of innovation in AI used for 

agricultural purposes. A redirection in innovation is 

necessary from an economic standpoint and from an 

equity and justice perspective. Smallholders promote 

ecological diversity, many farmers in the Global South 

are women and children, and crop and livestock 
production on small farms sustains food security for a 

burgeoning population2. Smallholders' role and 

position in the food system make it necessary to steer 

innovation pathways of AI technologies that respect 

incumbent farming practices and traditional 

ecological knowledge3. Using a justice-based 

framework can promote technological development in 

agriculture that takes into account smallholder 

farmers’ productive and ethical context4,5. 

Advancements in remote sensing applications 

in agriculture 

Remote sensing techniques, such as satellite imagery, 

are increasingly used to achieve sustainable food 

security in Global South. This technology helps to 

reduce fieldwork and provides accurate data at 

different scales6. Since the launch of the first civilian 

earth-observing satellite Landsat 1 in 1972, the 

number of geo-products produced by agencies and 

private companies has increased. Federal agencies 

such as ESA, NASA, and USGS and commercial 

providers such as Planet, Airbus, and Maxar offer a 

range of satellite data products. The NASA/USGS 

Landsat program continues to launch satellites, and 

the latest, Landsat 9, produces 30-meter resolution 

images with a revisit time of 16 days. However, 

commercial satellites such as RapidEye may be more 

suitable for more specialized applications such as 

disease detection because of their higher spatial 

resolution and shorter revisit times7–9. 

Although most satellite imagery is free to use, 

processing raw data requires technical expertise for 

real-world applications8. This is where cloud-based 

computation platforms such as Google Earth Engine 

have come into play, significantly reducing the time 

required to process satellite data and providing open-



access data with various applications10. Hansen et al.11 

used the Google computational infrastructure to 

generate a map of global forest change, using 654,178 

Landsat 7 images in just 100 hours. This process 

would have taken over a million hours without such 

technology, as stated by Amani et al12. 

Satellite imaging has advanced significantly with the 

latest generation of satellites capable of capturing 

images with improved temporal and spatial 

resolution13. For example, the Jilin-1 satellite can 

capture images from the earth's surface six times a day 

at resolutions ranging from 30 cm to 1.2 m14. These 

satellites can also produce high-resolution imagery 

and cover a wider range of color bands, resulting in 

more detailed and nuanced imagery. Data captured by 

satellites has supplied the creation of AI models that 

can use them to inform agronomical decisions. 

Links between AI applications and data 

availability and use 

AI and remote sensing capabilities have increased in 

the last few years15, and reductions in the cost of 

images, remote sensing technologies16,17, and main 

electronic components18 have made the field attractive 

to investment and research. Investment in technology 

in the agricultural sector by Venture Capital has 

increased constantly, except for a slight decrease in 

funding in 202219,20. Research outputs present a 
similar upward tendency, constantly growing from 

201421. On the other hand, public investment in 

research and innovation in agriculture does not 

correspond with the value produced by agricultural 

production, and has shown stabilization or decline in 

recent years22. The data shows that the innovation 

ecosystem is maturing, a situation that will impose 

harder challenges to the governance arrangements in 

agriculture. 

One application of AI in agriculture is Precision 

Agriculture (PA), which enables site-specific 

application of farm inputs (seeds, chemicals, 

irrigation) to improve farm profits and environmental 

sustainability. Although PA has the potential to 

increase farm yields, profits, and can reduce 

agriculture’s ecological footprint, its adoption is 

currently limited, and its benefits are shared 

disproportionately. Many smallholder farms have little 

use for PA due to limited technical skills and 

knowledge, small acreage providing few marginal 

economic benefits of adoption PA and economic 

instability23. However, it is still unclear how these 

technologies influence smallholder farmers and their 

effects on the sustainability and inclusiveness related 

to their practices 24. 

Successful AI applications in agriculture depend 

greatly on the availability and quality of data collected. 

However, there are several challenges related to 

access, ownership, and privacy of farm data. Access to 

publicly available satellite images, once privately held 

data, is now being opened to public and corporate 

entities.  Farmers often lack the technical capacity to 

make use of these geospatial data, while it may be used 

by more powerful actors like corporations or 

governmental regulators.   

Some of the greatest barriers to widespread adoption 

of PA25 are economic limitations, data privacy 

concerns, and a lack of trust in corporations and 

government. Economic limitation among small farms 

compared to larger farms has produced a technology 

gap. Surveys of have demonstrated that larger farms 
have more capital to invest in the technology and 

software, are more capable of taking risks due to the 

ability to absorb decreases in profit, and can create 

specialized jobs to analyze and make decisions based 

on the collected data26,27.  

In terms of data, there is dissonance between AI 

developers and farmers (users of technology and 

producers of data). Adopting data governance 

principles, like the FAIR principles, could alleviate 

some of the central concerns in power between 

various actors regardless of scale. The FAIR principles 

include the requirement for data production to be 

Findable, Accessible, Interoperable, Reusable28. 

Similarly, the five principles of the European Union 

Code focus on (1) data ownership, (2) data access, 

control, and portability, (3) protection and 

transparency, (4) privacy and security, and (5) liability 

and intellectual property rights. These principles can 

provide institutions and stakeholders with a 

framework to regulate data production and use in 

agriculture29.  

Finally, a lack of trust in the recommendations 

provided by new technologies in agriculture usually 

stems from a lack of communication because 

companies create the technology due to technology 

push, and stakeholders provide limited input in its 

development30. Farmers may disagree with the 

recommendations from scientists because of their 



experiential site-specific knowledge, termed the 

paradox of acceptability31.  

Looking through a social justice lens at AI and 

remote sensing applications for smallholders 

To tackle these challenges, governance issues related 

to the position of smallholders in the context of AI 

development will require support under a social 

justice framework that achieves global benefits while 

respecting and uplifting small producers. We 

understand social justice under four dimensions: 

• Distributive Justice. The dimension most discussed 

under governance arrangements, this aspect of 

justice deals with the problem that the benefits of 

new technologies are not shared equally by 

members of society. Caring for the situation of 

smallholders will require that governance 
considers how benefits of new technologies reach 

all groups participating in agriculture. 

• Procedural Justice. This element relates to the role 

of participation of users in technology 

development. Procedural Justice looks to open 

spaces for participation in the spaces of data 

collection and the technologies used. Since 

technology development in agriculture is usually a 

supplier-dominated endeavor32, smallholders’ 

role in the design decisions of new technologies 

needs to be fostered by ethical guidelines in a 

justice-led governance framework. 

• Recognition Justice. This third dimension looks at 

the role of representation and participation in 

terms of the ethical standing of groups that might 

bear the negative consequences of social and 

technological activities. By providing public 

acknowledgment of differences and contexts, 

Recognition Justice towards smallholder 

production can inform policies that provide 

protection and foster alternative pathways 

depending on the multiplicity of views of 

stakeholders.    

• Restorative Justice. It considers the role of balance 

by repairing and restoring material conditions 

after harm has occurred. It has recently been used 

to analyze the role of a justice framework in 

problems related to sustainability transtions33. 

When linked with Data-based AI technologies, 

Restorative Justice allows to frame considerations 

of equilibrium in power relations and avoiding 

damages to traditional knowledge and 

biodiversity. 

In the case of AI and remote sensing technologies, a 

justice lens can help address the challenges of 

smallholder producers. Figure 1 highlights different 

approaches to governing big data and AI through a 

social justice lens. 

Policy recommendations 

Governments or public-private partnerships need to 

adapt data privacy and ownership regulations to the 

agricultural landscape, while safeguarding the data 

preferences of smallholders. At the same time, 

voluntary or regulated standards of transparency of 

models used in AI need to be made publicly available 

and easy to understand for potential users. Even if 

many technology companies have preemptible 

developed ethical guidelines in their products, 

oversight will be necessary to guarantee that 

smallholders agree with their assumptions and 

objectives. 

In terms of market regulation, controlling the power 
of oligopolies and AI developers should be paramount. 
Promoting competitive markets will limit the power of 
suppliers and technology developers. This could be 
achieved by an increase of investment in public 
funding for research and development in this industry. 
Funding will also allow for the creation of local 
capabilities to control and steer AI technologies. Such 
control must be integrated with local knowledge of 
farming to ensure that smallholders’ culture, 
traditions, practices, and goals will be treated fairly by 
those who hold greater power in this arena.  

Participation and engagement of users in adapting 
technology to their needs and goals should be a critical 

imperative of governance that promotes justice. As the 

previous section showed, almost every dimension of a 

justice-based approach to the governance of AI 

technologies requires an active involvement of users. 

In this area, participation can be fostered by 

promoting extension services to help educate small 

farmers about technologies that work best in their 

operations. 

Specifically related to the usage of remote sensing in 

agricultural settings, facilitating access to satellite 

data, while paying special attention to unintended 



consequences, such as increased land concentration 

derived from the abuse of new technologies.   

Figure 1. Governance challenges of AI technologies in agriculture from a justice lens. 
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Table 1. Mapping FAIR Principles to EU Code 

 

 


