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Abstract 

Concrete is by far the most abundant material produced by humanity in both volume and weight. It is not surprising 
that it is also a significant source of solid waste that ends up in landfills. Based on EPA data, the Construction and 
Demolished (C&D) concrete waste accounts for 70% of all the construction materials in landfills. Moreover, cement 
manufacturing emits approximately 20% of all industrial oxides of nitrogen (NOx)emissions leading to a negative 
impact on human health and the environment. This report will provide an overview of concrete production, the 
environmental challenge in the cement industry and put forward a policy recommendation to address climate change 
using innovative technological approaches. 

 

Air Pollution and its Impact 

As per World Health Organization (WHO), an estimated 
7 million people are killed worldwide every year due to 
air pollution [1].   91% of the world’s population lives in 
places where air pollution levels exceed WHO guideline 
limits [2]. The ambient and household air pollution 
attributable death rate is higher in the continents of Asia 
and Africa, as shown in Figure 1. Among multiple 
sources of air pollution, the cement industry is 
potentially the most significant anthropogenic source of 
air pollution. The industry emissions include oxides of 
nitrogen (NOX), oxides of sulfur (SOX), oxides of carbon 
(CO, CO2), and Volatile Organic Compounds (VOCs) [3, 
4]. According to various studies, CO2 emissions from 
cement manufacture account for 5-7% of global total 
CO2 emissions. [5-8]. CO2 emissions from the cement 
manufacturing process are mostly caused by two 
factors: raw materials and fuel combustion. NOX and SOX 
emissions are some of the most serious environmental 
health and safety issues associated with cement 
manufacturing [9].  

Sulfur oxides are produced by the burning of sulfur-
containing fuels and the oxidation of sulfur-containing 
raw materials [10]. These sulfur oxides combine with 
water vapor and other compounds in the atmosphere to 
generate sulfuric acids. These acids dissolve in the 
suspended water droplets and are carried down into the 
soil by rain or snow. This is referred to as acid rain. 
Similar to sulfur oxides, nitrogen oxides are produced in 
the high-temperature combustion process of a rotary 
cement kiln. Approximately 90% of nitrogen oxides are 
produced in the form of nitric oxide (NO), with the 
remaining 10% produced in the form of nitrogen 
dioxide (NO2). At atmospheric conditions, NO 
transforms to NO2 at the exit of the stack [11]. NOX, like 
sulfur dioxide, interacts with water and other chemicals 
to form a variety of acidic compounds. NOX reacts in the 
atmosphere under exposure to the sun to form ground-

level ozone, which causes respiratory illness and other 
health issues [12-15]. In summary, based on the WHO 
data, 9 out of 10 people worldwide live in places where 
air quality excessed the WHO guideline limit. Therefore 
it is important to address this problem to reduce 
emissions and prevent hazardous effect to human 
health and environment. 

the COVID-19 pandemic, frontier technologies such as 
AI showed their usefulness. For example, by adopting 
AI, Republic of Korea was able to develop much needed 
diagnostic kits within a month in the. For another 
example, hospitals in Thailand adopted AI solutions and 
5G tech to fight COVID-19. The ubiquitous applications 
of frontier technologies in Asia and the Pacific have been 
discussed in ESCAP (2020). 

Moving forward, and in the context of 2030 Agenda for 
Sustainable Development, frontier technological 
breakthroughs such as AI, robotics, 3D printing, and the 
Internet of Things amongst others carry the 
transformative potential. On the other hand, adoption of 
these technologies is tempered by increasing concerns 
about the potential negative impacts such as job losses 
to automation and increased inequalities.  

This policy brief examines key opportunities and 
challenges of frontier technologies in relation to 
sustainable development. It proposes some key policy 
priorities that could form the basis of a next generation 
technology policy framework for the Fourth Industrial 
Revolution future and ensure that frontier technologies 
more deliberately align to the ambitions of the 
Sustainable Development Goals (SDGs). 
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Figure 1. Ambient and household air pollution attributable 
death rate (100,000 population) 

 
Source: World Health Organization (WHO) 

 

Overview of Concrete Production 

As shown in Figure 2(A), concrete is the most widely 
produced and used building material [16]. The most 
crucial factor for concrete's success is its superior water 
resistance [17]. Whereas conventional steel, wood, or 
other construction materials would corrode and 
deteriorate, concrete can endure water without 
degradation. Another reason for concrete's widespread 
use is its capacity to be molded into a wide range of 

forms and sizes. When considering both the engineering 
and economic viewpoints, the most important reason 
for the widespread usage of concrete is its availability 
and low cost. The main ingredients for making concrete 
are a) cement, b) water, and c) aggregates, which are 
widely available and reasonably priced across the 
world.  

Unsurprisingly, concrete is also a major source of solid 
waste that ends up in landfills. The worldwide 
Construction & Demolition (C&D) waste market is 
estimated to reach USD 34.4 billion by 2026, with C&D 
waste reaching a rate of 2.2 billion tons per year by 2025 
[18, 19]. As shown in Figure 2(B), concrete accounts for 
up to 70% of total C&D waste [20-23]. One of the 
primary techniques to solve these difficulties is to 
recycle old concrete. Thus, in recent years, the 
worldwide concrete industry is looking towards the 
reclamation of demolished concrete as a practical and 
sustainable solution to the scarcity of raw materials and 
landfill areas. As a result, the use of recycled concrete as 
a cement replacement material has recently gained 
more attention as both coarse and fine aggregates from 
waste concrete can be used to produce new concrete 
mixtures [24, 25]. In conclusion, it is important to 
address the large volume of demolition waste from 
existing concrete structures given the shortage of 
landfill area, and the rising expense of waste treatment 
before disposal.  

 

Figure 1. (A) Yearly production of various materials from Ashby (2009) (B) Amount of construction and demolition debris generated 
in United State 2015 from U.S. Environmental Protection Agency (EPA) 

 

Current Emission Control Methods 

There are several strategies to reduce air pollution, 
which include: (1) overall process modification, where 
energy efficiency and process parameters are 
optimized, (2) combustion optimization and control 
approaches, and (3) introduction of pollution control 

technologies to remove NO2. The third strategy utilizes 
several technological solutions, such as selective 
catalytic reduction (SCR) and selective noncatalytic 
reduction (SNCR) [26, 27]. Given that these technologies 
utilize expensive catalysts and chemicals such as 
ammonia and urea, the overall cost of implementation 
of these approaches can be very high. Some studies 
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indicate that the removal of air pollutants can be 
achieved by photo-catalytically active TiO2 mixed into 
cementitious products [28-45]. However, this approach 
is costly and time-consuming, given the catalyst 
deactivation, the need to have UV illumination to 
activate TiO2, and the overall inefficiency of bulk 
modification of concrete as the only surface located 
catalytic particles can be activated by light. Another 
issue is related to poor dispersibility and/or occlusion 
of TiO2 in cementitious materials [35, 46, 47], resulting 
in poor performance of this modified concrete.   

Another strategy for air pollutant removal is based on 
the utilization of activated charcoal in hardened cement 
pastes and concrete to enhance the pollutant removal 
efficacy [32, 48].  Developing new strategies for 
pollution mitigation is routed in the pressing industrial 
needs that can be exacerbated by a high probability of 
even tougher air pollution standards. Overall, the 
application of air pollution control methods can cut the 
number of people affected by hazardous air pollutants, 
however, the cost of the current methods can be 
prohibitive in developing countries.  

Innovative Approach to Simultaneously 
Recycle Concrete and Address Air Pollution 

Utilizing concrete to sequester CO2 has been a very 
prolific and promising area of research [1-3]. However, 
new studies have discovered for the first time how 
waste crushed concrete can facilitate the sequestration 
and removal of NO2 [47] and SO2 [48]. This innovative 
approach offers a new way of removing hazardous air 
pollution from flue-gas in a cheap and sustainable way. 
This can potentially be a viable way to offset emissions 
from cement manufacturing factories as well as other 
industrial installations thereby minimizing their 
environmental impacts. Moreover, studies show that 
recycling NO2 sequestered waste concrete back into the 
new concrete mixture improves the structural 
properties of new concrete and enhances corrosion 
inhibition properties [56, 57]. The use of recycled 
concrete for new concrete by itself is a big leap towards 
better sustainability, and new research helps to 
overcome the current challenges of recycling waste 
concrete. The synergic effect of capturing air pollutants 
and using recycled concrete as a corrosion inhibitor can 
transform the construction industry, address air 
pollution, and reduce climate change. In summary, 
transformative methods for reducing concrete waste 
and air pollution can be the sustainable way forward.  

Policy Recommendation 

As all main air pollutants have an impact on the climate, 
air pollution and climate change are inextricably linked. 

Improving our air quality will benefit health, economic 
development, and the environment, as well as help 
mitigate climate change. This report highlights the 
mounting issues of air pollution, particularly from the 
construction industry, and emphasis on upcoming 
innovative methods to transform the construction 
industry and address climate change. Three policy 
implications are especially significant.  

1. To foster sustainable innovation, policymakers 
must bring together industries and academia. 
Industries have the ability to scale up innovative 
intellectual discoveries on a large scale. As a 
result, codesigning policies across various areas 
would allow for dynamic synergies that would 
lead to sustainable waste management and 
reduce air pollution impact. 

2. Implementing concrete recycling and air quality 
control measures for low-income countries 
should take into account the existing practices 
and high costs of some of the technologies 
utilized in developed countries. Decision 
making of which measures should be 
implemented must be based on rigorous 
economic and environmental analysis. Sharing 
of expertise from developed countries may be 
required to implement recycling and air quality 
control measures without impeding 
development. 

3. Developed and developing countries must 
collaborate on such issues as sustainable 
construction and waste management. Through 
participation, collaboration, and regulation-
based oversight, the industries must innovate 
and enable technological advancement that is 
economically affordable and environmentally 
sustainable for wider adoption. 
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