
Why Foresight Matters for Big Earth Data

From Observation to Anticipation

Data = evidence of change

Foresight = anticipation of possibilities

Together → smarter, earlier action

Source: https://assets.science.nasa.gov/content/dam/science/esd/climate/2023/12/maldives_1920x1200.jpg

Big Earth Data gives evidence of change. Foresight uses that evidence to imagine what could happen next.

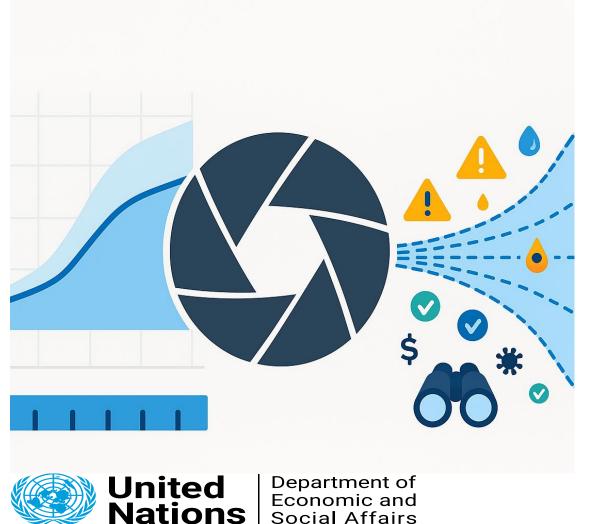
Horizon scanning – Spotting what is emerging

Horizon scanning systematically looks for early signals of change so government can anticipate emerging risks and opportunities.

 Identify emerging changes that could have a big impact on a country or a specific sector.

• Make sense of disruptions and weak signals to reveal patterns and drivers (PESTLE).

 Shift from reacting to the past to preparing for multiple plausible futures.


PESTLE ANALYSIS MODEL FRAMEWORK

- Helps organize Big Earth Data signals so emerging patterns and risks can be understood in context.
- Ensures that space and geospatial data translate into policy-relevant insights for decision-making in SIDS.
- Supports governments in connecting data trends with real-world implications across sectors.

How Horizon Scanning Links Data to Decisions

Horizon scanning systematically looks for early signals of change so government can anticipate emerging risks and opportunities.

Frame: Define the topic and time horizon (e.g., coastal resilience, 2030).

Scan: Gather signals from Big Earth Data and other sources.

Interpret: Group signals into trends and assess impact.

Sensemake: Discuss what these mean for policy and action.

Report: Feed insights into national and sector plans.

Big Earth Data & Strategic Foresight — A Complementary Approach for SIDS

Why They Work Better Together

- Big Earth Data tracks what is happening now (e.g., sea-level rise, deforestation, erosion)
- Strategic Foresight explores what could happen next (e.g., scenarios, risks, opportunities)
- Together, they support anticipatory, coherent, and risk-informed STI and DRR strategies

Shared Value for SIDS

- Make planning more visual, grounded, and future-ready
- Connect science, data, and long-term governance decisions
- Support integration across climate, disaster, and development policies

Next Steps: Horizon Scanning for Your Big Earth Data Work

- Start scanning for weak signals outside your usual information sources
- Look at intersections: Where do Earth data, tech innovation, and SIDS priorities meet?
- Ask: 'What emerging capability could transform our use of Earth data?'
- Build early warning systems for opportunities, risks, and gamechanging developments

What UN DESA is Doing in SIDS on Foresight

Capacity-building workshops: Dominican Republic, the Bahamas, the Maldives, Seychelles, Saint Lucia and Mauritius on strategic foresight and systems thinking for resilient governance.

Supporting integration of foresight into national planning and climateresilient recovery strategies and STI Roadmaps.

Knowledge products: Developing training manuals and e-learning modules, with SIDS learning path on anticipatory governance.

Upcoming work: Embedding foresight into public-sector induction programmes in Saint Lucia (2025-2026); foresight for climate resilience in Pacific SIDS (2026-2028) and establishing foresight units in countries

Let's Build Future-Ready SIDS

If you have any questions/would like follow-up activities

or

If your governments are interested in building capacity on strategic foresight, please contact:

Azeema Adam azeema.adam @un.org